

EFFECT OF TILLAGE AND VARIETY ON WEED CONTROL AND YIELD PERFORMANCE OF UPLAND RICE

A. D. Manthy¹, S. Abdulhamid² & I. K. Adamu¹

¹Department of Crop Science Taraba State College of Agriculture, Jalingo ²Department of Basic Science, Taraba State College of Agriculture, Jalingo

Correspondence Address: abdulhamidsabo2@gmail.com

ABSTRACT

Weeds are a constant pest of rice and can cause huge crop failure. Field trials were carried out to determine the impact of tillage and variety on weed suppression and yield of upland rice during 2018 and 2019 cropping seasons in Jalingo (8° 54' N 11° 22' E). The experiments were 2 factor design comprised of four tillage treatments (minimum tillage, disc plough, disc harrow and disc plough/harrow) and three rice varieties (NERICA 2, NERICA 7 and Local var.) laid out in a Randomized Complete Block Design (RCBD) and replicated three times. Data were gathered on weed density, weed biomass, yield and yield components of rice. Results indicated that minimum tillage recorded significantly lower average weed density (97.60 no/m²) (47.80 no/m²) and weed biomass (19.09 g/m²) (7.03 g/m²) compared to average weed density (124.75 no/m²) (80.32 no/m²) and weed biomass (29.49 g/m²) (18.56 g/m²) in disc plough/harrow treatment plots at 5 and 8 WAP. Similarly local var. recorded significantly higher average weed density (107.55 no/m²) (66.30 no/m²) and weed biomass (21.82 q/m^2) (14.05 g/m^2) compared to weed density (81.09 no/m^2) (52.70 no/m^2) and weed biomass (15.92 g/m²) (8.33 g/m²) in NERICA 2 treatment plots at 5 and 8 WAP. Significantly higher average grain yield were recorded in disc ploughed/harrowed (3129 kg/ha) and NERICA 2 (3102 kg/ha) treatments plots in both years.

Key words: Weed control, Upland rice, Tillage, Variety

INTRODUCTION

Rice is one of the major cultivated food crops in Nigeria due to its wide acceptance as a food item (Adigbo *et al*; 2018). It is considered as the most important grain with regard to human

nutrition and caloric intake, providing more than a fifth of the calories consumed by human species (Wagan *et al*; 2015). Rice production in Nigeria is hampered by several factors such as poor soil fertility, erratic rainfall distribution, lack of access to chemical fertilizers and improved rice varieties, weed interference and inappropriate tillage practice (Dada *et al*; 2017).

Tillage is the use of machine, animal or man power (energy) for physical manipulation of soil to provide condition favourable for plant growth (Kishor *et al*; 2013). The objectives of tillage among others include creating suitable seedbed, promotion of higher crop profits, increase crop yields, soil improvement and protection, optimum use of water resources by plants and weed control (Hanna *et al*; 2009).

The choice of crop cultivars as biological weed control method to suppress weeds is an important tool in weed management in rice (Kolo *et al*; 2012), however, this is often overlooked (Ferrell *et al*; 2006). Currently, there is increasing interest in determining the genetic ability of rice variety to overcome weed pressure in other to maintain high yield (Bhagirathy, 2012). Rice growth attributes (vegetative traits) such as plant height, number of tillers, number of leaf, leaf area and leaf area index have been assessed to understand their effects on weed suppression and yield performance of rice (Gibson *et al*; 2001).

Weeds remain the major production constraint in rainfed upland rice production (Rondenburg *et al*; 2009). Management of weeds in upland rice ecology have often been accomplished majorly by herbicide application and hand (hoe) weeding (Toure

et al; 2013). Manual hand (hoe) weeding is an effective means of controlling weeds in upland rice production, but a declining labour force have led to increase in its cost of production compared to the increase in the crop prices (Anwar et al. 2014), hence, encouraging the use of herbicide (Fischer et al; 2004). There is also growing concerns about the impact of herbicides on human health problems of resistance and weed shift in weeds (Bhagirath et al; 2012) which necessitated the need for alternative approaches for weed management in rice. Surveys showed that reduction in use of agrochemicals can improve the sustainability of the agroecosystem in long term (Pardo et al; 2011). Growing competitive rice varieties along with appropriate tillage practice may help farmers to sustainably manage weeds at low cost (Beckie, 2011). Therefore, this study was conceived with the objective of evaluating the effect of tillage and variety on weed suppression and yield performance of upland rice in Jalingo.

MATERIALS AND METHODS

The field trials were conducted during 2018 and 2019 cropping seasons at the Teaching and Research farm of Taraba state College of Agriculture, Jalingo (8° 54' N 11^o 22' E) in the guinea savannah zone of Nigeria. The treatments consisted of four tillage (minimum tillage, disc plough, disc harrow and disc plough/harrow) and three rice varieties (NERICA 2, NERICA 7 and Local var.). The twelve (12) treatment combinations were laid out in a Randomized Complete Block Design (RCBD) with three replications. Disc plough and disc plough/harrow operations were carried out with tractor-mounted disc plough while disc harrow was done with tractor-mounted disc harrow. In the minimum tillage plots, weeds were killed with Roundup (a glynhosate herbicide), applied at the rate of 4 litres per

hectare with 15 litres capacity Knapsack sprayer. Before seeds were planted each plot was measured 5m x 4m. A 5m x 2m path separated between one treatment and another and between the three replicates. This was to enable easy turning of the tractor at end of rows in disc plough, disc plough/harrow and disc harrow treatments (Olaoye, 2002). The elite rice varieties were sourced from National Cereals Research Institute (NCRI) Baddegi, Niger state, while the local var. was obtained from a farmer in Jalingo. The rice seeds were soaked in water for 24 hours, removed and kept in dark corner of the room and cover with jute bag for 48 hours. The sprouted seeds were sown four per hill using 20cm x 25 cm spacing and thinned to two seedlings per hill at 2 WAP. Manual hand weeding was done at 2, 5 and 8 WAP. Birds were controlled by covering the entire farm with fishing net. Harvesting was done manually with sickle and left in the field for four days to dry. Threshing was done manually by beating the panicle against old drum on tarpaulin, then winnowed, bagged and labeled according to plot. Weed density and weed biomass data were determined at 2, 5 and 8 WAP. Yield and yield components data (panicle weight, panicle length, and number of grains/panicle, number of panicle/m², 1000-grain weight and grain yield) were taken from net plot of 1m² at harvest. All data collected were subjected to analysis of variance (ANOVA) using Genstat package version 8.1. Means separation was accomplished using Duncan Multiple Range Test (DMRT) at 5% level of probability.

RESULTS/DISCUSSION

Tillage and variety had significant effect on weed density and weed biomass at 5 and 8 WAP and not at 2 WAP (Table 1 & 2). Disc ploughing/harrowing recorded significantly higher average weed density (124.75 no/m²) and 80.32 no/m²) and weed Journal of Agriculture and Veterinary Sciences Volume 12, Number 3, 2020

biomass (29.49 g/m² and 18.56 g/m²) compared to average weed density (97.60 no/m² and 47.80 no/m²) and weed biomass (19.09 g/m² and 7.03 g/m²) recorded in minimum tillage treatment at 5 and 8 WAP in both years. Dis plough (117.19 no/m² and 62.15 no/m²) and disc harrow (116.42 no/m² and 60.18 no/m²) had similar effect on weed at 5 and 8 WAP in both years.

The significantly higher weed density and weed biomass obtained in disc plough/harrow is in line with Shrestha et al. (2002) who reported that though disc plough/harrow operation incorporated plant residues in to the soil and killed weeds, it also brought weed seeds to the soil surface due to more disturbance which had favoured their (weed seeds) germination and emergence. Hartman et al. (1990) observed that soil disturbance through disc plough and harrow stimulated weed seed germination and infestation. Minimum tillage recorded lower weed density and weed biomass. This is in agreement with Okorie et al. (2001) who reported higher mean annual weed populations in more disturbed than less disturbed (minimum tilled) soils.

Similarly, variety significantly impacted on weed density and weed biomass at 5 and 8 WAP and not at 2 WAP as indicated in Table 1 and 2. The local variety had significantly higher average weed density (107.55 no/m² and 66.30 no/m²) and weed biomass (21.82 g/m² and 14.05 g/m²) compared to average weed density (81.09 no/m² and 52.70 no/m²) and weed biomass (15.92 g/m² and 8.33 g/m²) recorded in NERICA 2 at 5 and 8 WAP in both years.

The result showed that the effect of variety on weed density and weed biomass were in the order. Local var.>NERICA 7>NERICA 2. This revealed that NERICA 2 reduced significantly weed density and weed biomass than NERICA 7 and the local var. This could be attributed to superior vegetative performance of the cultivar (NERICA 2). So, it could be obvious that the vegetative attributes of NERICA 2 helped in enhancing its competitiveness against weeds, therefore suppressing them. This is in line with Ahmed et al. (2014) who reported that vegetative attributes of crops are essential for their weed suppression.

The interaction between tillage and variety on weed density and weed biomass was significant at 5 and 8 WAP (Table 1 & 2). Planting of local var. in seedbed resulted to significantly higher average weed density (128.86 no/ m^2 and 76.67 no/ m^2) and weed biomass (26.10 g/m² and 22.14 g/m²) compared to average weed density (77.36 no/m² and 42.51 g/m²) and weed biomass (12.47) g/m^2 and 7.16 g/m^2) in the minimum tillage plots planted with NERICA 2 at 5 and 8 WAP in both years. The grain yield and yield related parameter were significantly influenced by tillage and variety in both years as presented in Tables 3 and 4. Disc plough/harrow seedbed recorded significantly higher average panicle weight (3.46g), panicle length (28.82cm), grains/panicle (147.85), panicles/m² (64.96), 1000-grain weight (34.74g) and grain yield (3129 kg/ha) than average panicle weight (1.49g), panicle length (20.54 cm), grains/panicle (97.03), panicles/m² (49.01), 1000-grain weight (26.06g) and grain yield (2288 kg/ha) recorded in minimum tillage in both years.

Among the tillage treatments, disc plough/harrow maximized grain yield and yield components of rice. This is in agreement

Journal of Agriculture and Veterinary Sciences Volume 12, Number 3, 2020

with Polthanee *et al.* (2002) who reported higher cowpea grain yield and yield components in disc plough/harrow than maximum tillage. Ujo *et al.* (2014) also reported higher rice yield with disc plough/harrow compared with disc plough, disc harrow and minimum tillage treatments. Similarly, Bangura *et al.* (2016) also reported higher grain yield of rice in disc plough/harrow than with minimum tillage.

Similarly, NERICA 2 had significantly higher average panicle weight (3.12g), panicle length (29.36 cm), grains/panicle (163.46), panicles/m² (69.63), 1000-grain weight (30.64g) and grain yield (3102 kg/ha) compared to average panicle weight (1.31g), panicle length (19.58 cm), grain/panicle (92.65), panicles/m² (43.97), 1000-grain weight (21.89g) and grain yield (2009 kg/ha) in the local var. during 2018 and 2019 farming seasons.

The significantly higher yield performance observed in NERICA 2, could be attributed to vegetative performance due to genetic makeup. This is in line with Ahmed et al. (2014) who reported that vegetative attributes of crops are essential for their yield performance. Adigbo, *et al.* (2018) also reported that differences in grain yield and yield components of rice are greatly influenced by genetic factor and the environmental condition under which the crop was cultivated.

There was significant interactive effect between tillage and variety on grain yield and yield components of rice (Table 3 & 4). NERICA 2 planted in disc ploughed/harrowed plots recorded significantly higher average panicle weight (3.22g), panicle length (30.47cm), grains/panicle (222.71), panicles/m² (79.47), 1000-grains weight (30.84g) and grain yield (3232

kg/ha) than average panicle weight (1.08g), panicle length (17.50 cm), grains/panicle (91.78), panicles/m² (40.32), 1000grains weight (17.75g) and yield (1886 kg/ha) in local var. planted in minimum tillage plots in both years.

CONCLUSION

Population of fresh weeds and weed biomass were significantly reduced under minimum tillage and NERICA 2 treatments. Significantly higher grain yield and yield components were recorded in disc plough/harrow and NERICA 2 treatments. It is concluded that when NERICA 2 is planted in disc ploughed/harrowed seedbed, it will lead to higher grain yield. Journal of Agriculture and Veterinary Sciences Volume 12, Number 2, 2020 ISSN: 2277-0062 http://www.cenresinjournals.com

Table 1: Weed density as influenced by tillage and variety during 2018 and 2019 cropping seasons

36030113						
Weed density (no/m²)						
		2018			2019	
		WAP			WAP	
Treatments	2	5	8	2	5	8
Tillage						
Min. tillage	221.62a	111.08c	52.40c	249.04a	84.12c	43.20c
Disc plough	222.43a	127.83b	73.20b	251.70a	108.00b	51.10b
Disc harrow	219.16a	125.62b	71.11b	252.31a	107.25b	49.26b
Disc	225.15a	139.10a	82.33a	253.00a	110.41a	78.30a
plough/harrow						
Variety						
NERICA 2	241.68a	89.43c	58.18c	258.44a	72.75c	47.22c
NERICA 7	239.45a	93.72b	62.96b	256.04a	92.11b	50.11b
Local Var.	240.13a	102.62a	71.09a	257.90a	112.48a	61.51a

Interaction

					of Upland Ri	ce	
Tillage x Minimum till	Variety NERICA 2 NERICA 7 Local Var.	220.77a 218.34a 219.52a	92.621 124.20hi 136.34d	48.10i 53.60g 69.25cd	222.54a 220.32a 223.61a	62.11i 72.00h 83.80g	36.19k 45.26j 51.30i
Disc plough	NERICA 2 NERICA 7 Local Var.	217.61a 221.16a 218.66a	121.11j 146.00a 152.30b	53.32g 63.27e 77.61b	219.82a 217.31a 220.25a	85.20ef 89.77d 94.22b	64.28def 66.43d 70.15b
Disc harrow	NERICA 2 NERICA 7 Local Var.	220.41a 224.30a 219.00a	119.34k 129.42fg 132.20e	50.14h 57.84f 70.80c	217.66a 220.11a 221.42a	81.09g 86.10e 93.70bc	62.44g 57.24h 62.00g

10

		Journal of Agric	Journal of Agriculture and Veterinary Sciences								
	NERICA	217 <mark>.92a 125.60</mark> h	Volume 12, N 57.30f	<mark>Vumber 3</mark> , 2 218.32a	<mark>020</mark> 83.17g	65.14de					
	2	223.24a 130.25f	70.31c	220.25a	89.22d	68.11c					
Disc	NERICA	219.30a 159.62a	80.34a	223.71a	98.10a	73.00a					
plough/harrow	7										
	Local										
	Var.										

Weed biomass (g/m²)						
		2018			2019	
		WAP			WAP	
Treatments	2	5	8	2	5	8
Tillage						
Min. tillage	92.86a	20.01d	8.24d	85.83a	18.17d	5.82d
Disc plough	89.78a	23.70c	11.05c	83.11a	21.43c	8.10c
Disc harrow	90.24a	26.43b	17.82b	84.18a	24.64b	12.12b
Disc	92.29a	30.17a	21.81a	86.20a	28.82a	15.31a
plough/harrow						
plought harrow						

Table 2: Weed biomass as im	pacted by tillage	e and variety 2018	and 2019 crop	oping seasons

Variety

					Effect of Tillage of Upland Rice	e and Variety o	on Weed Control and Yield Performance
NERICA 2 NERICA 7 Local Var.		95.71a 96.92a 98055a	17.52c 18.88b 23.17a	7.08c 9.92b 13.11a	89.89a 90.14a 92.23a	14.33c 17.28b 20.47a	9.58c 12.00b 15.00a
Interaction Tillage × Minimum till	Variety NERICA 2 NERICA 7 Local Var.	93.88a 92.10a 95.67a	12.72k 18.12fghi 21.40f	7.52k 11.28gł 14.14ef	79.41a 77.25a 78.10a	12.23h 14.90fg 17.80bcde	6.81j 9.00bcdefgh 11.62bcdef
Disc plough	NERICA 2 NERICA 7 Local Var.	94.52a 93.81a 92.11a	23.04e 26.18c 29.14b	10.40i 12.05g 14.02e	80.53a 77.40a f 78.63a	14.13fg 19.83bc 21.18b	8.96bcdefghi 10.28bcdefg 13.40bcd

		Journ	al of Agricultu	ire and Veterinar	y Sciences]	
	NERICA	90 <mark>.53a</mark>	- <u>16.08j</u>	olume 12, Numb 15.10e	er 3, 2020 81.30a	15.00f	9.36bcdefgh
	2	91.25a	18.17fghi	18.09bcd	79.25a	15.41f	12.32bcde
Disc harrow	NERICA	93.55a	20.25fg	21.25b	80.73a	18.57bcd	15.15b
Disc hui i ow	7						
	Local						
	Var.						
	_						
	NERICA	94.10a	19.41fgh	18.10bcd	82.00a	17.03bcde	12.00bcde
	2	92.15a	24.32d	19.35bc	80.55a	21.02b	14.40bc
Disc	NERICA	93.17a	32.40a	24.11a	79.21	29.80a	20.16a
plough/harrow	7						
	Local						
	Var.						

Table 3: Effect of tillage and variety on grain yield and yield components of upland rice 2018

cropping se	ason						
201	8						
	Panicle wt (g)	Panicle length (cm)	No. of grains per panicle	No. of panicle/m ²	1000- grain (g)	wt	Grain yield (kg/ha)
Treatments							

					Effect of Tillage of Upland Rice	and Variety on \	Need Control and Yield Performance
Tillage							
Minimum till		1.41c	21.03c	95.24c	46.38d	27.81d	2345d
Disc plough		2.92b	25.60b	134.10b	57.25c	32.08c	2879a
Disc harrow		2.89b	26.73b	132.13b	60.33b	35.29b	2898b
Disc		3.81a	29.44a	157.200	u 68.53a	38.40a	3106a
plough/harrow							
Variety							
NERICA 2		3.10a	28.43a	200.100	n 70.81a	34.01a	2994a
NERICA 7		2.31b	23.62b	180.34b	61.34b	28.53b	2783b
Local Var.		1.38c	19.82c	87.25c	42.82c	22.51c	2011c
Interaction							
Tillage x	Variety						
2	NERICA	2.46b	25.70bc	133.00ł	n 55.70g	26.52bcde	2789g
	2	2.22b	21.83e	126.50g	49.43i	23.90fg	2542h
Minimum till	NERICA	1.01d	15.58h	82.25 ເ	40.821	18.18h	18831
	7						
	Local						
	var.						

		Jourr	nal of Agricul	ture and Veter	inary Sciences		
	NERICA	2 <mark>.51b</mark>	26.10b	Volume 12, Nu 184.63d	imber 3, 2020 73.68d	29.32b	2952d
	2	2.17b	23.18d	169.83f	62.51f	26.00bcde	2875f
Disc plough	NERICA 7 Local Var.	1.30c	19.22f	95.24j	45.90k	22.41fgh	1920k
	NERICA	2.92b	26.32b	182.51c	77.38b	28.33bc	3095c
	2	2.44b	25.81bc	179.27e	70.24c	27.06bcd	2884e
	NERICA	1.37c	18.10fg	89.30k	48.10j	23.71fg	1957j
Disc harrow	7						
	Local Var.						
	NERICA	3.34a	28.66a	218.25a	81.64a	32.85a	3215a
	2	2.62b	25.42bc	192.54b	72.66de	29.15b	3034b
Disc	NERICA	1.82c	19.00f	97.30i	51.11h	24.43f	1988i
plough/harrow	7						
	Local						
	Var.						

Table 4: Effect of tillage and variety on grain yield and yield components of upland rice 2019 cropping season

	201	.9				
	Panicle wt (g)	Panicle length (cm)	No. of grains per panicle	No. of panicle per m²	1000- grain wt (g)	Grain yield (kg/ha)
Treatments						
Tillage						
Minimum till	1.58c	20.05c	98.81c	51.63d	24.31d	2231d
Disc plough	2.08b	24.11b	128.62 b	53.24c	26.06c	2698c
Disc harrow	2.17b	25.17b	129.22	56.76b	28.49b	2972b
Disc plough/harrow	3.10a	28.20a	138.50	61.40a	31.08a	3152c
Variety						
	3.14a	30.30a	126.82	68.44a	27.27a	3210a
NERICA 2	2.03b	27.50b	۵	59.63b	24.92b	2870b
NERICA 7	1.34c	19.34c	119.08	45.12c	21.27c	2008c
Local Var.			b 98.06c			

		Journal of	Agriculture and Volume 1	Veterinary Scien 2, Number 3, 20	ces D20		
Interaction							
Tillage x Minimum till	Variety NERICA 2 NERICA 7 Local Var.	2.18b 1.58f 1.16h	25.11bcde 22.20g 17.42k	209.61 b 182.40 j 101.32 n	60.10def 57.92g 39.81k	22.22e 19.54efgh 15.32j	2654ł 2465i 1889l
Disc plough	NERICA 2 NERICA 7 Local Var.	3.10a 1.92c 1.21fg	27.15bc 24.81bcdef 20.77ghi	208.66 bc 188.36 h 116.15k	68.31bc 62.58d 45.10j	25.10bc 21.52ef 18.61efghi	2979c 2910g 1900k
Disc harrow	NERICA 2 NERICA 7 Local Var.	2.93b 2.25b 1.83cd	26.25bcd 24.09bcdef 19.72fghij	201.41 def 190.62 g 111.00 l	69.54b 61.82de 49.11i	24.81bcd 22.42e 19.17efgh	3011c 2963f 1961e

				Effect of Tillage and Variety on Weed Control and Yield Performance of Upland Rice			
		• • •					
	NERICA	3.11a	32.29a	227.11	77.30a	28.82a	3249a
	2	2.84b	28.10b	6a	68.41bc	26.63b	3171b
Disc	NERICA	1.68cde	21.42fgh	202.14	51.18h	20.34efg	2084j
plough/harrow	7		-	de		-	-
	Local			110.66 l			
	Var.			m			

6. References

- Adigbo, S.O., Osadebay, P.J., Iseghohi, I., Alarima, C.I., Agbenin, N.O., Odedina, J.N. & Fabunmi, T.O (2018).
 Screening and evaluation of upland rice (Oryza sativa L.) varieties in inundated soil. AGRICULTURA TROPICA ET SUBTROPICA, 51(2):63-69.
- Ahmed, S., Salim, M. & Chauhan, B.S. (2014). Effect of weed management and seed rate on crop growth under direct dry-seeded rice systems in Bangladesh. PLOS one. 9(7):1-10.
- Anwar, M., Juraimi, P., Samedani, B., Puteh, A. & Man, A. (2012). Critical period of weed control in Aerobic rice. The scientific world Journal volume, Article ID 603043, <u>http://dx.doi.org.10.1100/2012/603043</u>.
- Bangura, K., Aikins, S.H.M., Dogbe, W. & Kamara, C.S (2016). Effect of tillage and weeding frequency on rice yield and yield components. International journal of science: Basic and Applied Research, 28(2):141-150.
- Beckie, H.J. (2011). Herbicide-resistant weed management: Focus on glyphosate. *Pest Management Science*, 67(9).1037-1048.
- Bhagirathy, S.C (2012). Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technology, 26(1):1-13.
- Dada, O.A., E.M. Oladiran, O.S., Olubode & Togun, A.O. (2017). Influence of weeding regimes on composition and diversity of weeds species in upland rice (Oryza sativa L.) field. Nigerian Journal of Ecology, 16(1):62-74.
- Ferrel, J.A., MacDonald, G.E. & Beckie, B.J. (2006). Weed management in soyabean, FAS Extension, University of Florida. 26 p.

- Fischer, A.J. & Hill, J.E (2004). Weed control programs, rice production workshop. Oakland, CA: University of California, division of Agriculture and natural resources, p.1-9.
- Gibson, K.D., Hill, J.E., Foin, T.C., Caton, B.P. & Fischer, A.J. (2001). Water-seeded rice cultivars differ in ability to interfere with water grass. *Agronomy Journal*, 93(2):326-332.
- Hanna, M. & Al-Kaisim M.M. (2009). Resources conservation practices, managing and understanding soil compaction. Iowa University extension Article PM 1094.
- Hartman, K.M. & Nezadal, W (1990). Photocontrol of weeds without herbicides. Weed research, 77:158-163.
- Kishor, P., Ghosh, D.K. & Claramma, P.V (2013). Influence of tillage on soil physical environment. International Journal of Agronomy and plant production, 4(10):2592-2597.
- Kolo, M.G.M., & Umaru I. (2012). Weed competitiveness and yield of inter and intra-specific upland rice (Oryza sativa L.) under different weed control practices at Badeggi, Niger state, Nigeria. African Journal of agricultural research, 7(11):1687-1693.
- Okorie, I.K., Tijani-Eniola, H., Agboola, A.A. & Nwagwu, F.A (2001). Effect of different tillage land management method on weed flora dynamics at Lisagbede, South-Eastern Nigeria. *Nigerian Journal of Weed Science*, 14:33-39.
- Olaoye, I.O (2002). Influence of tillage on crop residue cover, soil properties and yield components of cowpea in derived savannah ectones of Nigeria. *Soil and tillage Research*, 64(3-4):327-143.
- Pardo, G., Aibar, J., Ciria, P., Lacasta, C., Lezaun, J.A. & Zaragoza, C. (2011). Organic versus conventional methods

of fertilizer and weed control in a long term rotation of cereals in semi-arid spain. *Chilean Journal of Agricultural Research*, 71:187-194.

- Polthanee, A. & Wannapat (2002). Tillage and mulching effects on growth and yield of cowpea grown following rice in the post-mansoon season of North-Eastern Thailand. *Kasetsart Journal of Natural Science*, 34:197-204.
- Rondenburg, J., Sait, K., Kakai, R.G., Toure, A., Mariko, M. & Kiepe, P. (2006). Weed supressiveness of the lowland rice varieties of NERICA in the Southern Guinea savannah. *Field Crops Research*, 114(3):411-418.
- Shrestha, A., Knezevic, S.R., Roy, R.C., Ball-Coehlo, B.R., & Swaton, C.J. (2002). Effects of tillage, cover crop and crop rotation on the composition of weed flora in a Sandy soil. Weed Research, 42:150-159.
- Toure, A., Sogbedji, J.M. & Gumedzoe, Y. M.D (2013). The critical period of weed interference in upland rice in northern guinea savannah: Field measurement and model prediction. African Journal of Agricultural Research, 8(17). 1748-1759.
- Ujoh, F.T. & Ujoh, F. (2014). Effects of different tillage operations on rice yield at Yandev, Central Nigeria. *Agricultural Science Development*, 3(1):132-138.
- Wagan, S.A., Noonari, S., Memon, I.N., Bhatti, M.A., Kelwar, G.Y. Sethar, A.A & Jamro, A.S (2015). Comparative economic Analysis of hybrid rice versus conventional rice production in district Badin Sindh Province, Pakistan. Journal of environment and earth science, 5(3):76-89.