SIATISICAL ANALYSIS OF THE RELATIONSHIP BETWEEN AGE AND HIGH BLOOD PRESSURE OF PATIENTS

Tivel Francis Enahora X Erigeva Agwn Godspawer Department of Mathematice and Statistics
Delta State Polytechnic, Ozara
Email: Fenaitivel4@smail.com

Abstract

This study was intended to investigate and to ascertain whether these cxist or not a selationship between age and high blood pressuse of patients in Sapele metropalis, Delta State. Data was collected prom eighteen (18) patients sandamly selected fram the secords/files and their averase blood pressuse for three conservative months: March, Apil and May 2016. A Hypothesis was formulated and tested using the statistic at $\alpha=0.05$, level of significance, Regession analyis was also employed in the analysis of data collected from the sample to forecast blood peessuse of patients. Results from the analysis showed that, these is a significant selationship between age and high Clood pessuse with a coefficient of 0.729 showing that the Blood pessuse is dependent on age. Forceasted Clood pessuses of ages $180,85,87$ and 90) of would be fatients ming the regession equation $y=77.43+1.183 x$, with corsespanding Clood pessuse of 172, 178, 180 and 183 respectively. It is herely secommended that people should fram the habit of predicting their blood pressuse and underga routine checkup to know their blood pressuse status and seek early teatment where necessary.

Keywords: High blood pressuse, data, study, decision, regession, age,

INTRODUCION

Age is a recognized sisk factor for high blood pressuse and the incidence of this disease increases with age. While a great deal is understood about the contribution of age to averall sisk profile, the issue semains complicated and these is a continuous delate about several key points. Increase in blood pressuse (BP) bas been taken as an inevitable consequence of ageing in industrialized socicties, siving sise to hypertension to a large extent in eldesly subjects (Franblin, 1991). For instance, while the National Institute of Ageing (NIA, 2011) separts that mose than 50% of the aver the age 60 have high blood pressuse, these is considerable disagreement in the scientific community about what that statistic actually mean. These elements includes maintaining diet (especially salt intake and fats), exescising, limiting ane's intake of alcohol and deadly substances, maintaining a bealthy weight, developing strategies to cope with stress etc.

Blood pressuse is the force of blood against the walls of asteries which sises and falls dusing the day, when llood pressuse or hypertension, Hypertension is the medical term associated with High Blood pressuse (WHO, 2015).. A blood level of $140 / 90 \mathrm{mmHz}$ is
considesed high. About twa-third of people aver age 65 have been estimated to have High Blood pressuse. If your blood pressuse is letween $120 / 80 \mathrm{mmHg}$ and 139189 mmH fr, then you have pre-hypestension. This means that you do not bave High blood pressuse now, but ane is likely to develop it in future. If a person develops high blood pressuse befose the age of 50, his or her sisk of heast failuse is greatly increased. If untreated, it can reduce life expectancy by 10 or mose yeass.

Research has separted that men often develop high blood pressuse within the age of 35 and 55 while wamen often develop high blood pressuse after menopause (WHO, 2015).. Both numbers in a llood pressuse test are important for people who are 50 and above. The number at the upper limit of the test is called, the systalic blood pressuse, while that at the lawer limit of the test is called the diastalic blood pressuse. i.e. $(140 / 90)$

Systdic llood pressuse is the force of blood in the asteries as the heast beats. It is shown at the top number in a blood pressuse reading. High blood pressuse is 140 mmHg and above for systalic pressuse. Systolic pressuse gives the most accurate diagnasis of high blood pressuse. Diastalic llood pressuse is the force of blood in the astesies as the beast selaxes between beats. It is shown as the bottom number in a blood pressuse reading. This has been, and semains, especially for younger people, an impartant hypertension number. The higher the diastolic llood pressuse, the greater the sisk of heart diseases. As people become alder, the diastalic pressuse will begin to decrease and the mptolic pressuse beings to sise and becames mose important. Diastolic pressuse does not need to be high for you to have high blood pressuse.

Clinical studies have proven that treating a high systolic pressuse saves life, greatly seduces illness and improves the quality of life. Yet, most people do not have theis high Clood pressuse under control, Holmes and Rabe (1967) stated that "the mose stressful the changes that take place in a pesson's life, the greater the likelibood of illness within the next year or two"'. Even pasitive change can be stressful.
livingstone Medical Care, Boston (2015) has found that being overweight or having history of high blood pressuse alsa increases a pesson's chance of developing this condition. It has stated that "hypertension sesults in constricted blood vessels and causes the llood supply to organs such as the kidney to drop". Negative emotional state may lead people to think that they are sicker than they really do whereas pasitive emotional state seems to enhance it (Salovey et al., 2000)". The health consequences of negative emotionally depend on how individuals ase able to manage and sepais their moods and this may be a function of dispasition. Hypertension is an increasingly important concern from middle life. It is
the most common chronic candition among 45 to 64 years ald men and second mast common (after asthsitis) in women in that age group. Hypertension can lead to heast attack or stroke or cognitive impairment in late life launer et al., (1995).

Hawever, it is not clear on the borderline hypertensive Patient should be treated medically since the side effects of the medications may outweigh any benefits. Activity of the sympathetic nervous system and secretion of epinephsine and no-epinephsine can elevate blood pressuse in many ways Kaplan (1986). High blood pressuse (Hypestension) is called the silent killer because it is such a serious sisk factor. Yet wo consistent pattern symptors seveal itself to allow a patient to identify it selially. Symptoms such as beadache, dizziness, shortness of beath and blussy vision may oceus in people quite fequently than thase without elevated llood pressuse. Dennelaker, (1982) has presented evidence that estain individuals may have their awn unique symptans that go with high blood pressuse, lut these do not generalize fram ane person to the other. It is associated with strokes, setinal damage, diseases of the coronary asteries and heast problems.

In early stage of hypertension, high cardice output tends to be the culprit. In the later stages, pesipheral sesistance seems to play a mose central sole (Kaplan, 1981). 95% of all hypertension cases were categosized as essential hypertension that alsa known as primary hypertension or idiopathic hypertension. Environmental factors including absity, high alcohd intake, bigh salt intake, insulin sesistance, low potassium intake, ageing, sedentary lifestyles, stress and law calcium intake contribute to the development of hypestension (Cassetero and Oparil, 2000). This study is aimed at using regression analysis to evaluate the selationship between age and high blood pressuse and to forecast the llood pressuse of patient using the formulated regression equation.

STATEMENT OF THE HYPOTHESIS

The following hypothesis is formulated;
Ho: These is no corselation between age and high blood pressure among patients
H1: These is corvelation letween age and high blood pressuse among patients

MATERIALS AND METHODS

This study is designed on haw regression can be used to analyze the natuse of the selationship between age and blood pressuse. The systalic llood pressuses of eighteen (18) patients was sandamly selected with a period of three consecntive months abtained i.e. fram the files/records of the Hospital March-May, 2016, which fram the sample of study. The targeted population of study of a medical facility in Sapele was assived at using a
simple random sample without seplacement (SRSWWOR) lattery method from a whale list of medical facilities abound in the Metropolis. Regression analyis was employed and hypothesis formulated wese tested using Analysis of Variance (ANOVA) techniques.

DATA PRESENTATION AND ANALYSIS

Table 1: Distribution of Age and Cumulative Average of Blood Pressuse From March - May 2016

Patients	Age	Average pressuse (mm Hz)
1	43	128
2	48	120
3	56	135
4	61	143
5	67	141
6	70	157
7	49	158
8	50	155
9	37	102
10	28	100
11	51	159
12	45	149
13	68	160
14	59	135
15	61	155
16	60	153
17	70	160
18	46	130

Sance: Field Susvey (2019)

Regression Model

Using the least squase method of the regression analysis, the data in Table 1 bas to be identified in terms of x and y, i.e. the independent vasiable and the dependent variable sespectively. The method is used to minimize the essor sum of squase (SSE) and the regression model is given by:
$Y=b_{o}+b_{i} X_{i}+e_{i}$
Where
Y is the study variable or dependent variable
bo is the intercept
$b i$ is the slope
X is the independent vasiable
E_{i} is the Error term

Same asumptions of the models

(i) linearity asumption
(ii) Y(blood pessuse) depends on x (age)
(iii) Normality assumption
$e_{i} \sim N\left(O, \delta^{2}\right)$
Table 2: Calculation aning the Ordinary least Squase Method

Patients	X	Y	$X Y$	X^{2}	Y
1	43	128	5504	1849	16,384
2	48	120	5760	2304	14,400
3	56	135	7560	3136	18,225
4	61	143	8723	3721	20,449
5	6	141	9447	489	19,881
6	70	157	10990	4900	24,649
7	49	158	7742	2401	24,964
8	50	155	7750	2500	24,025
9	37	102	3774	1369	10,404
10	28	100	2800	784	10,000
11	51	159	8109	2601	25,281
12	45	149	6705	2025	22,201
13	68	160	10,800	4624	25,600
14	59	135	7,965	3481	18,225
15	61	155	9,455	3721	24,025
16	60	153	9,180	3600	23,409
17	70	160	11,200	4900	25,600
18	46	130	5,980	2116	16,900
	969	2540	139,524	54,521	364,622

$$
y=b_{o}+b_{i} X_{i}+e_{i}
$$

where $\hat{b} 1=\frac{n \sum X Y-\sum X \sum Y}{n \sum X^{2}-\left(\sum X\right)^{2}}$
$=\frac{18(139,524)}{18(54,521)}-=\frac{(969)(2540)}{(969)^{2}}$
$=\frac{2,511,432}{981,378}-=\frac{2,461,260}{938,961}$
$\hat{b}_{1}=1.183$
$b_{0}=\bar{y}-\hat{b}, \bar{x}$
$=141.11-1.183$ (53.83)
$=141.11-63.68$
$b_{0}=77.43$
Hence, the regession equation is given as
$y=77.43+1.183{ }_{1}$

Adequacy Test

Having known the regression equation, the question now is haw adequate is could the model be used as forecasting techniques in decision making: the above question brings the test of adequacy into play using an assused significance level of 5\%.

Table 3: ANOVA

Sounce of Variation	Sum of rquares	Deqree of freedom	Mean squase	f-ratio
Regression	28.32	1	28.32	13.74
Ersor	38.68	16	2.06	
Total	62.00	17		

$H_{\text {a: }} \beta=0$ (i.e. no issuificance relationship between age and high blood presure).
$H_{1}: \beta \neq 0$ (i.e. these is significance selationship between age and high blood pressuse).
$\alpha=0.05$
Test statistic: f-ratia $=13.74$
Decision Rule: Reject Ho if f calculated is geater than f talulated at the appropriate degree of freedom.
Since f calculated $=13.74>$ f tabulated $0.05(1,16)=4.49$, we seject Ho and acept H_{1} and conclude that these is significant selationship between age and high blood pessuse at $\alpha=0.05$ level of rignificance.

Blood Presure forecast prom Age of Patient

The blood pressuse of a patient can be forecasted fram the regression equation
$y=77.43+1.183 x_{1}$

Talle 4: Fosecasted Blood Pressuse

Age (X)	Forecasted blood Pressure (Y)
80	172
85	178
87	180
90	183

Calculation of Cosselation Colficient
$r=\frac{n \sum x y-\sum n x \sum}{\sqrt{\left(n \sum x^{2}\right.}-\left(\sum(x)^{2}\right) n \sum y^{2}-\left(\sum y\right)^{2}}$
$r=\frac{18(139,524)-(2540)(969)}{\sqrt{18(54,521)-(966)^{2}\left[(364,622)-(2540]^{2}\right]}}$
$2=\frac{50172}{\sqrt{(42417)(111596)}}$
$=0.729$

Cofficient of Determination

Ha: These is na coselation between age and high blood pessuse
Hi: These is a cosselation between age and high blood pessuse
$\alpha=0.05$ level of significance

Test Statistic

$t=\frac{r \sqrt{N-2}}{\sqrt{1-\left(r^{2}\right)}}$
$t=\frac{0.729 \times 4}{\sqrt{1-(05314)}}=\frac{2.916}{0.6845}$
$=4.26$
Decision Rule: Reject Ho if t-calculated is geater than 1 -tabulated at to so:
Conclusion: Since t calculated is 4.26 and is greater than t talulated $=1.75$, we seject H_{0} and acept H_{i} and concluded that these is a coselation between age of patients and high Hood presuse at $\alpha=0.05$ level of rignificance.

DISCUSSIONS

The sesults of this study show that these is a linear selationship letween age and high blood pressuse among sampled patients in the study sample doservations. The sull hypothesis H_{a} : $\beta=0$ in the adequacy test was sejected at $\alpha=0.05$ level of significance and H_{1} was accepted which indicates that these is significant selationship between age and high blood pressuse. Alsa, the coefficient of determination test alsa rejected the null hypothesis since t - calculated of 4.26 was greater than t - talulated of 1.75 at $\alpha=0.05$ level of significance.

CONCLUSION AND RECDMMENDATIONS

The findings of this study clearly revealed the selationship between age and bigh blood pressuse among patients. Thesefore age is a strong determinant in ascestaining high blood pressuse status. Based on the above findings, it is hesely recommended that people should form the balit of predicting their blood pressuse fram the regsession equation $Y=77.43+$
$1.183 x$ and underga soutine checkup to know their blood pressuse status and seek early treatment where necessary.

REFERENCES

Cassetera D. A. and Opasil S. (2000). Essential Hypertension. Circulation, 101(4): 446453
Franklin, S. S (1991). Ageing and hypertension: the assessment of Clood pressuse indices in predicting coronary heart disease. I Hypertens 7 (Suppl 5)S29-S36.
Holmes T. H and Rabe R. H (1967). The Stress scale, Vousnal of Psychosamatic Reseasch, 11(2): 213-218, Elsevier Science Inc.
Kaplan B Horward (1986). Social Psychology of Self-Referent Behaviaw. Springer Science \& Business Media
lameer L. J., Masaki K., Petrovitch H., Foley D. and Havlik R. J. (1995). The Association between Midlife Blood Pressuse levels and Late-life Cognitive Function. The Hondulu- Asia Aging Study. JAMA., 274:1846-51
NIA (2011). Glabal Health and Ageing, WHO US National Institute of Ageing
Pennebaker V. W. (1982). "The prychology of physical symptoms" Springer-Verlag New York Salovey P., Rothman A. J., Deiweiler V. B. and Steward W. J. (2000). Emotional State and Physical Health. American Pyschologist, 55(1):110-121
William Hasvey (2006). "The circulation of blood" Cosima Classies, New York.

Wilmot M. P. (2011). Seffanitoring Personality at Work Revisited: A Comparative Meta- analysis Theses, Dissertations, and Student Scholaship: Agsicultural Leadesshif, Education and Communication Department.21. bttps://digitalcammonsunl.edu/aglecdiss/21
WHO (2015). Repart on the Prevalence of High Blood Pressuse

