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ABSTRACT 
The theory of generalized integrated autoregressive bilinear time series models which are 
capable of achieving stationary for all nonlinear series are proposed in this paper. These 
models are denoted by GBL (p, d, 0, r, s). The sufficient conditions for stationary of this 
bilinear time series models are derived. An algorithm for selecting the best order of the 
model is proposed. The parameters of the proposed models are estimated using robust 
nonlinear least squares method and statistical properties of the derived estimates are 
investigated. The bilinear models are fitted to Wolfer sunspot numbers and stationary 
conditions are satisfied. 
Keywords: Non-linear Least Squares, Parameters, Wolfer sunspot numbers, Algorithm and Stationary 
 

INTRODUCTION 
The bilinear time series models have attracted considerable attention during the last years. 
They have found a variety of applications including those in economy, biology, ecology, 
software interfailure, signal processing etc Ojo (2010). 
 
An overview of various models and their application can be found by Granger and Anderson 
(1978), Pham and Tran (1981), Subba Rao (1981), Gabr and Subba Rao (1981), Rao et al. 
(1983), Liu (1992), Gonclaves et al. (2000), Shangodoyin and Ojo (2003), Wang and Wei 
(2004), Boonchai and Eivind (2005),  Bibi (2006), Doukhan et al. (2006), Drost et al. (2007), 
Usoro and Omekara (2008), Ojo (2009). The bilinear modes studied by the above authors 
could not achieve stationarity for all nonlinear series. Rao et al. (1983) gave a set of 
sufficient conditions for the existence of a strictly stationary stochastic process conforming to 
the following bilinear model: 

1 1 1

p p q
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i i j
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  

    , denoted as BL(p, 0, p, q)  

where p is the order of the autoregressive component, and p, q is the order of the nonlinear 
component. paaa ,....,, 21  are the parameters of the autoregressive component and 

pqbb ,,.........11  are the parameters of the nonlinear component. 

 
In this paper, we extend the work of Rao et al. (1983) to the proposed generalized 
autoregressive integrated bilinear models which are capable of achieving stationary for all 
nonlinear series; this is an important improvement over other bilinear time series models.  
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PROPOSED GENERALIZED INTEGRATED AUTOREGRESSIVE BILINEAR TIME 
SERIES MODELS  
We define generalized integrated autoregressive bilinear (GBL) time series models as follows: 
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)()(  , denoted as BL (p, d, 0, r, s) 

 where  p

p BBBB   .......1)( 2

21  and 

tstrtrsttdptdptt eeXbeXbXXX   .............. 111111             (2.1) 

 p ,...,1  are the parameters of the autoregressive component;
 rsbb ,,.........11  are the 

parameters of the nonlinear component; )(B is the autoregressive operator and 
d

t BXB  )()(   is called the generalized autoregressive operator. 

 
The Vector Form of BL (p, d, 0, r, s) 
It is convenient to study the properties of a process when the model is in the state space 
form because of the Markovian nature of the model Akaike (1974).  
Let  
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transpose of a matrix) t = …..-1, 0, 1,….. With this notation, we can write the model (2.1) in 
the vector form as: 
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STATIONARY AND CONVERGENCE OF GENERALIZED INTEGRATED 
AUTOREGRESSIVE BILINEAR MODELS 
In this section, we give a sufficient condition for the existence of strictly stationary process 
and convergence conforming to the bilinear model (2.1). This we do through the following 
theorem. 
 
THEOREM 
Let  Ztet , be a sequence of independent identically distributed random variables defined 

on a probability space  PF,,  such that E et = 0 and  22 tEe .Let , B1, B2,….,Bq be 

q+1 matrices each of order p x p and 
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have moduli less than unity, i.e, .1)(   L  Let 
1px

C   be a given column vector. Then there 

exists a vector valued strictly stationary process  ZtX t , conforming to the vector form of 

generalized bilinear model tjtjt

s

j

jtt ee CXBXX  



 
1

1 for every t in Z. 

PROOF  
The proof of the theorem for the sake of simplicity is carried out in the following steps. 
Step 1 

Let the process  Ztntn ,,,S  be defined as follows:    

,...)( ,22,221,11, ststsnsttnttntttn eBeBeBCeS   SSS  if n>0 for every t in Z. 

We show that tnn ,lim S  exists almost surely for every t in Z. If tX  is the almost sure limit of 

 1,, ntnS  for every t in Z, then it is obvious that the process },{ Ztt X  conforms to the 

bilinear model (2.1). It is also easy to check that for every fixed n in Z,  Zttn ,,S  is a strictly 

stationary process. 
Step 2 

Let  .,,1,, Zttntntn  SSs  We show that 2/

, )( n

itn KE s for every 0n  and i = 1, 2, ….,p, 

where K is a positive constant. Since ,1  this then implies that  1,, ntnS  converges almost 

surely for every t in Z. (If }1{ , nan is a sequence of real numbers satisfying 
n

nn Kaa  1
for every 2n for some positive constant K and ,1  then it is easy to show 

that }1{ , nan is a Cauchy sequence of real numbers.) 

Step 3 

First, we settle the question of integrability of the stn

,

,s . Note that 

tntntn ,1,,  SSs  

 = ststsnsttntnt eBeBeB   ,22,221,111 ......)( sss  

 = ntntttn eeeQ  ,021 ),.....,,( s  = ,),.....,,( 21 ntntttn CeeeeQ   

Volume 2, December 2010 
 

Journal of Engineering and Applied Sciences 



56 
 

where ),.....,,( 21 ntttn eeeQ   is a matrix  of order p x p and each entry of this matrix is a 

polynomial  in nttt eee  ,.....,, 21  in which  the power index of each jte  is either 0 or 1. 

Consequently, every entry in ),.....,,( 21 ntttn eeeQ  and hence in tn,s is integrable. It is clear 

that distribution of tn,s does not depend on t. 

Step 4 
It is convenient to deal with the following processes. Define 

 *

,tns  ,),.....,,( 21 CeeeQ ntttn    if n > 0 for every t in Z. Equivalently, ,*

,, nttntn e  ss   n, Zt . 

From the remark made regarding the sQn

'(.)  in step 3, it is obvious that every entry in *

,tns  is 

square integrable. Further, it is easy to check that stn

'*

,s satisfy the following equation. 
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, ....)( ssss                       (2.3) 

for every n, t in Z. Also, the distribution of *

,tns  does not depend on t, since the set
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We evaluate the expectation of each expression within each set of brackets {} in (2.4) 
Step 6 

We write ).))(()(( *
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In a similar fashion, we can show that 212
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and 222

2

22 )()(  nMBBDDE  .Consequently, the expected value of the entire 

expression in the second set of such brackets 

is .))()(( 222222112

2

  nn MMBBBBBB  

Step 8: Pursuing ideas similar to those used in step 7, we can show that the expected value 
of the entire expression in the third set of such brackets in (2.4) is 

.))()(( 3333321

2

21

2

3

2

 nMBBBBBBBB  

Step 9: The expectations of other expressions can be evaluated analogously. Finally, we 
obtain 

in
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for all n. 

Step 10 

Since )( *

,

*

, tntnn EM ss  , we have 

  n

itn KE '2*

, ))(( s   

where 1)(   L  and 'K  is a positive constant.  

 
DESCRIPTION OF ALGORITHM FOR FITTING GENERALIZED INTEGRATED 
AUTOREGRESSIVE BILINEAR MODELS 
For the sake of simplicity, we will break the algorithm down into the following steps. 
Step 1 
Fit various order of autoregressive model of the form                                                                                                     

tdptdptt eXXX    ......11
 

Step 2 
Choose the model for which Akaike Information Criterion (AIC) is minimum among various 
order fitted in step 1. 
Step 3 
Fit possible subsets of chosen model in step 2 using 12 q  subsets approach Hagan and 
Oyetunji (1980).  
Step 4 
Choose the model for which AIC is minimum among the fitted models in step 3 to have the 
best subset model. 
Step 5 
Fit various order of the generalized bilinear model of the 

form
tstrtrsttdptdptt eeXbeXbXXX   .............. 111111    

and choose the model for which AIC is minimum 
Step 6 
The model with the minimum AIC is the best generalized bilinear model. 
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ESTIMATION OF THE PARAMETERS OF GENERALIZED BILINEAR MODELS 
PROPOSED 

The joint density function of ),....,,( 1 nmm eee   where m = max (r, s) is given by 
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Since the Jacobian of the transformation from ),....,,( 1 nmm eee   to ),....,,( 1 nmm XXX  is unity, 

the likelihood function of ),....,,( 1 nmm XXX   is the same as the joint density function of 

),....,,( 1 nmm eee  . Maximising the likelihood function is the same as minimizing the function 
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where these partial derivatives of e(t) satisfy the recursive equations  

i

jt
s

j

t

i

t

d

de
tW

d

de







 )(
1

 = 1, if  i =  0 

                                                 Xt-i , if i = 1, 2, …, p                            
(2.7) 

mtkt

kmi

jt
s

j

j

kmi

t eX
dB

de
tW

dB

de






 )(
1

(k=1,2,…,r ; mi =1,2,…,s)                   (2.8) 

0)(
'

2

1
'

2







ii

jt
s

j

j

ii

t

dd

ed
tW

dd

ed


(i, i' = 0,  1, 2, …, p)             (2.9)

 

0)(
22

1

2

 







i

mit
kt

ikmi

jt
s

j

j

kmii

t

d

ed
X

ddB

ed
tW

dBd

ed


 

  (i=0,1,2,…,p ; ki =1,2,…,r; mi=1,2,…,s)                                 (2.10)  

'

2

'

'

2

1
'

2

)(
kmi

mt

kt

kmi

mit

kt

kmikmi

jt
s

j

j

kmikmi

t

dB

de
X

dB

ed
X

dBdB

ed
tW

dBdB

ed 











  

(k,  k' =1,2,…,r ; mi mi'  = 1,2,…,s)                               (2.11) 

 jt

s

j

ijj XBtW 




1

)(  

We assume et = 0 (t  = 1, 2, …, m-1) and also  
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(k=1,2,…,r ; mi =1,2,…,s), it follows that the second order derivatives with respect to i (i = 

0, 1, 2, …, p) are zero. For a given set of values }{ i and {Bij} one can evaluate the first and 

second order derivatives using the recursive equations, 2.7, 2.8 and  2.11. Now let 
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jiddQd GGGGH   be a matrix of second partial derivatives as in Krzanowski 

(1998). Expanding V(G), near GG ˆ in a Taylor series, we obtain 

)ˆ)(()(0)ˆ( ˆ GGGHGVGV
GG




  Rewriting this equation we get ),()(ˆ 1 GVGHGG   and 

thus obtain an iterative equation given by )()( )()(1)()1( kkkk GVGHGG   where )(kG  is the 

set of estimates obtained at the kth stage of iteration. The estimates obtained by the above 
iterative equations usually converge. For starting the iteration, we need to have good sets of 
initial values of the parameters. This is done by fitting the best subset of the linear part of 
the bilinear model. 
 
Numerical Example: The Wolfer Sunspot Data  
To present the application of the models proposed, we will use a real time series dataset, the 
Wolfer sunspot, available in Box et al. (1994). The scientists track solar cycles by counting 
sunspots – cool planet-sized areas on the Sun where intense magnetic loops poke through 
the star’s visible surface. It was Rudolf Wolf who devised the basic formula for calculating 
sunspots in 1848; these sunspot counts are still continued. 
 
As the Wolfer sunspot data set represent a non-stationary series, the bilinear models 
proposed in this paper may be applied. The Wolfer sunspot data set, is considered at 
different sample sizes of 50, 150 and 250. For the fitted model below we have used the 
algorithm and the estimation technique in the previous section. 
Fitted Model at t=50 
Xt = 0.314548Xt – 1 – 0.458429Xt – 2 – 0.302114Xt – 4 – 0.220568Xt – 5- 0.386159Xt – 6 – 

0.002758Xt – 1et – 1 – 0.020647Xt – 1et - 2- 0.018189Xt – 1et – 3 + 0.015317Xt – 2et – 1 + et  
Fitted Model at t=150 
Xt = 0.412820Xt – 1 – 0.271125Xt – 2 – 0.270908Xt – 3 – 0.339150Xt – 5- 0.293320Xt – 7 + 

0.000325Xt – 1et – 1 – 0.020870Xt – 1et - 2- 0.002425Xt – 1et – 3 + 0.018075Xt – 2et – 1 + 
0.009283Xt – 2et – 2 – 0.008691Xt – 2et – 3 – 0.019234Xt – 3et – 1 – 0.007737Xt – 3et – 2 + et  

Fitted Model at t=250 
Xt =- 0.239576Xt – 2 - 0.361665Xt – 3 – 0.238746Xt – 4 – 0.325416Xt – 5- 0.328627Xt – 6 - 

0.209789Xt – 7  - 0.365561Xt - 8 + 0.000633Xt - 1et – 1 - 0.010392Xt - 1et – 2 + 0.007590Xt – 
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1et – 3 + 0.005443Xt – 2et – 1 + 0.000716Xt – 2et – 2 - 0.005326Xt – 2et – 3 - 0.013130Xt – 3et – 1 
+ et  

The derived statistics from the above fitted models are given in table1, table 2 and table 3 
below. 
Table 1. Goodness of fit of generalized integrated autoregressive bilinear models at t = 50, 
t= 150 and t=250. All models are significant at P<0.001. 

 t=50 t=150 t=250 

Residual variance 250.20 193.20 285.50 

Akaike information 
criterion  

8.52 8.21 8.55 

Bayesian information 
criterion 

8.65 8.36 8.68 

R-Square 0.58 0.61 0.55 

Adjusted R-Square 0.55 0.59 0.54 

F(Statistic) 20.93 31.18 49.29 

 
From table 1, we could see the behavior of the proposed models at different level of sample 
sizes. The smallest residual variance was recorded at sample size of 150. The proposed 
model does not encourage working with large sample size. 
 
CONCLUSION 
This study focused on new bilinear models that could handle all non-linear series. Bilinear 
models at different levels of sample sizes were considered using the non-linear real series. 
Moreover, estimation of parameters has witnessed a unique, consistent and convergent 
estimator that has prevented the models from exploding, thereby making stationary possible.  
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