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ABSTRACT 
Some exact solutions are presented for the unsteady boundary layer flows of a homogenous, 
viscous, incompressible fluid bounded by (i) an infinite rigid oscillating flat plate or (ii) two 
parallel rigid oscillating flat plates as presented in [7] was extended to porous media. An 
explicit representation of the velocity fields for both the configurations has been given. The 
structures of the associated periodic boundary layers are determined with physical 
interpretations as in [4]. Several results of interest have been recovered as special cases of 
this general theory. The Heaviside operational calculus along with the theory of residues of 
analytic functions is adopted in finding the solutions. 
 
INTRODUCTION 
In the earlier works [1], unsteady boundary layer flows generated in a homogenous, 
incompressible viscous fluid by moving the boundary of the fluid impulsively with a 
prescribed velocity. The Laplace transform method [2] has been used to obtain exact 
solutions of the unsteady boundary layer equations in some general configurations. The 
structures of the unsteady velocity field and the associated boundary layers have been 
determined with physical interpretations. In addition to the generalizations of the earlier 
results, some new results of interest have been found. Basant and Kaurangini [8] studied 
unsteady boundary layer flows in porous media generated in a homogenous, non-rotating 
viscous fluid. The method of Laplace transform is used to obtain exact solutions of the 
unsteady boundary layer flow in a porous medium in a more general situation. The structures 
of the unsteady velocity field and associated boundary layers are determined. Several 
particular solutions are presented as special cases of the present general solutions. The 
physical implications of the mathematical results are investigated. 
 
 In this paper, we are primarily interested in extending the work of Michael and Lokenath [7] 
to the porous medium. This is the study of the unsteady periodic boundary layer phenomena 
in a homogeneous incompressible viscous fluid in porous media. Some general and exact 
solutions of the unsteady boundary layer equation are presented for two geometric 
configurations as in [1] and [7]. It is shown that the ultimate steady solution consists of 

double stokes layers of thicknesses of the orders 1,2)(r   
r

  where  is the kinematics 

viscosity of the fluid and r  represents the forcing frequency of the boundary of the fluid or 

the fluid in the porous media. The results of the earlier investigators are recovered as special 
cases of the present general result. In addition to the extensions of the earlier results, some 
new results of interest are obtained with their physical significance explored. The Heaviside 
operational calculus along with the theory of residues of analytic functions is employed for 
the investigation of the problems. 
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EQUATION AND GENERAL SOLUTION 
We consider the periodic unsteady boundary layer flows engendered in porous media are 
considered (i) in a semi-infinite expanse of a homogeneous non-rotating viscous fluid 
bounded by an infinite horizontal plate and (ii) in a homogeneous viscous fluid between two 
infinite parallel rigid flat plates. The flow is generated in configuration (i) by the oscillations of 
the plate and the oscillations of the main flow outside the boundary layer. In configuration 
(ii), both the boundary plates perform elliptic harmonic oscillations in their own planes so 
that an unsteady flow is set up in the fluid.  In the two-dimensional, Cartesian coordinates is 
employed with the origin, x-axis and y-axis in the plate at z=0 and the z-axis vertically 
normal to the plate. With the coordinate system, the unsteady flow is governed by the 
Navier-Stokes equation and the continuity equation in the forms 
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Where ),,( wvuu   is the velocity field,   is the density, and P is the pressure. 

In view of the symmetry of the configurations, all the quantities depend only on z and time t 
based on the usual assumptions of the unsteady two-dimensional flow, it can readily be seen 
that the non-linear term uu ).(   disappears exactly from (2). Consequently, it follows from (2) 

and (3) that the equations of the boundary layer flow in porous media take the form 
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 is the pressure gradient. 

  The boundary conditions for configuration (i) are  
                          ,0       0zon              )(),(  ttftzu                                (5) 

and                        ,0             ,z   as   )(),(  ttgtzu                          (6) 

where )( and  )( tgtf arbitrary functions of t and their particular forms are specified later. 

         For the flow in the inviscid region to be consistent with the basic equations of motion, 

we require                                       
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Where u is given by (6) 
The initial condition is  
                                   z   allfor        0at                  0),(  ttzu                      (8) 

This initial value problem can be readily solved by introducing the Laplace transform defined 
by the integral 
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The inverse Laplace transformation is given by 
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Using the Laplace transform method and initial condition (8), the solution for ),,( tzu subject 

to the required boundary conditions, can be  
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By virtue of the convolution theorem for the Laplace transform, solution (11) reduces to  
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This is the most general as well as exact solution of the velocity distribution. To investigate 
the flow features and the structures of the associated boundary layers, it is of interest to 
consider some special cases. We consider the following particular  
We consider the following particular case 
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Where  , 21  .are the given frequency of oscillations, a, b, c, and d are complex constants of 

order one. This case includes several other special cases of interest which arise when 
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DISCUSSION AND CONCLUSION 
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 It is evident from (15) that the velocity field consists of both steady state and transient 

components. In the limit t , the last four infinite series representing the transient solution 

decay exponentially to zero. Consequently, the ultimate steady state is attained in the limit. 
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The first four terms in (15) represent the steady-state solution which consists of the stokes 
boundary layers on both the plates. These layers have depths of penetration of oscillations of 

the order 
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of interest. 

In particular, when titi
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 , the velocity field ),( tzu   can be found 

in the form. In the limit t , the transient terms die out and the solution approaches the 

ultimate steady state.  
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