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ABSTRACT 
Queuing theory is a powerful quantitative tool that enables healthcare facilities to uncork 
chronic bottlenecks in the flow of patients but, healthcare systems have some peculiar 
features that impact on their modeling in the framework of the queuing theory. To redesign 
the radiodiagnostic facility of the University of Port Harcourt Teaching Hospital (U.P.T.H) 
using queuing theory, and to assess the impact of the time lag between patients arrival and 
the commencement of imaging procedures, occasioned by absences and lateness to work by 
healthcare personnel and other logistic problems, on the operating characteristics and the 
optimality criterion. The patients’ service schedule was altered so that only outpatients were 
allowed service during the peak period of 8.00 a.m. to 1.00 p.m. daily. Arrival and service 
rates data were collected and used to fit the Poisson model. Prior to this time, data were not 
available on arrival rates and service times. The steady-state probabilities, measures of 
performance, the probability of an arrival joining the queue, and the joining rate were 

calculated. The rescheduling revealed that the system was M/M/c/GD/ / as the patients’ 
arrival and service rates data collected fitted the Poisson model. We discovered an 
improvement in the various measures of performance especially, the throughput of 
outpatients although, the time lag between arrival and commencement of service increased 
the queue length and waiting time. Patient service in the radiodiagnostic facility can be 
optimized using the queuing theory but, service must commence as the patients arrive in 
order to achieve optimal performance. Secondly, performance of a queuing system may just 
be specified in terms of probabilities.  
Key words: Queuing, Optimization, Markov chain, Radiodiagnostic facility, Medical. 
 
INTRODUCTION 
The search for better ways to improve operational efficiency and production capacity for 
medical treatment has always bothered Healthcare managers. Queuing model offers an 
excellent tool to analyze and to improve the performance of healthcare systems. However, 
healthcare systems have some peculiar features that impact on their modeling in the 
framework of the queuing theory. Congestion occasioned by absences and lateness to work 
by healthcare personnel, and other logistic problems is a common feature in many public 
hospital based radiodiagnostic facilities in Nigeria. The diversity of the patient groups 
demanding service, and the diversity of the investigation mix poses a great challenge to 
effective and efficient design of the service delivery system. Whereas some investigations are 
simple and require short service times, others are complex and require longer service 
duration. Strategies must therefore, be developed to cope with the investigation mix, and 
ensure minimum delays and congestion at the facility. 
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In healthcare services, the demand for resources is to a large extent unscheduled. As a 
result, there is a permanent mismatch between demand for healthcare services and the 
available capacity (supply). Queuing models are useful for determining capacity levels (and 
the allocation of capacity) needed to respond to demands in a timely fashion1. The patient 
mix and the associated variability in the arrival stream and the hospital resources such as 
personnel, diagnostic rooms, waiting rooms, imaging machines, etc. in any radiodiagnostic 
process are inherently stochastic. Congestion at the facility could be attributed to a number 
of factors2. Delays and facility congestion have also been attributed to the quality and 
experience of the medical staff, and the allocation of medical capacity between distinct 
demand streams - outpatients, inpatients, and emergencies3. Queuing models usually 
assume time-independent (input) demand rates. In healthcare facilities, arrivals consist of 
acute (unscheduled) and elective (scheduled) patients. The long term steady-state 
probability distributions for queues are usually assumed to be independent of time. Green 
and Soares4, and Ingolfsson et al.5 have noted that in healthcare systems, we have time 
varying arrival rates and time varying server availability and time-dependent waiting times.  
 
Research has shown that application of quantitative techniques to patient service 
management has produced formidable and desirable results. Green6 propose a stationary 
independent period-by-period (SIPP) approach to determine how to vary staffing to meet 
changing demand. Green et al.7 used a finite horizon dynamic programming to investigate 
the allocation of service capacity among several competing customer classes in a magnetic 
resonance imaging (MRI) medical facility. In another study, it was shown that priority queue 
discipline reduces the average waiting time for all patients8. The analysis of patient transfer 
from outpatient physicians to inpatient physicians yielded similar result9. Queuing theory was 
used to predict the optimal number of scheduled slots to be reserved for emergency 
computed tomography (CT) and ultrasonography (USS) in a radiology department10.            
Congestion at the facility increases the probability of reneging and discourages arrivals11. In 
systems where demand exceeds server capacity, reneging is the only way that a system 
attains a ‘state of dysfunctional equilibrium’12. It is possible to redesign a queuing system to 
reduce reneging. A common approach is to separate patients by the type of service 
required11. In designing health care system using queuing theory, one problem is to 
determine the optimal design. Grassmann13 distinguished between optimal design of queues 
and optimal control of queues. He showed that the optimal service rate is closely related to 
the variance, 2 of the queue length and the expected number of elements an arrival will 

encounter before joining the queue, L*. He expressed the optimality condition,  

T = rD - Cs - CwL = 0 in terms of 2 and L* as  

r( L - L* )(D/) - Cs + Cw(2/)  = 0 where,  

D = ( L - L* )(D/),  L = - 2/, and 2 =  (i - L)2Pi ;   i = 0,1,2,…… 
T = net revenue per period, r = revenue for each customer served,  
D = unconditional rate at which customers join the queue,   
L = expected number of units in the system,  
i = number of elements in the system, and  
Pi = the probability of i elements in the system  
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Using this optimality criterion requires knowledge of the operating cost, waiting cost, and 
revenue of the system being modeled for the determination of the economic service rate 
(optimal service rate).             
 
A design is said to be optimal if the mean service rate results in minimization of delays, 
facility congestion and cost, and maximization of patients’ throughput and net revenue. 
Determining an optimal design in terms of cost and revenue is usually done on comparative 
basis with a view to selecting among alternative queuing models, one that yields the 
minimum cost service rate. Here, knowledge of the expected total systems cost per period, 
Tc  is important. Tc  = Wc + Fc where Wc is the expected waiting cost per period, and Fc is the 

expected facility (service) cost per period. Now, Wc = Cw.Ls = Cw( / -) and Fc = Cs where, 

Cw is  the cost of waiting per unit of time, Cs is the unit service cost, and Ls ,  and  are as 

previously defined. The expected total system cost is therefore, expressed as Tc = Cw( / -

) + Cs. Differentiating Tc with respect to  and equating to zero allows one to solve for  

which is the minimum cost service rate14. That is,  =  + (Cw / Cs)
1/ 2 . Often times, it is 

difficult to have access to data on cost and revenue of the system being studied. Also, in 
healthcare services the objective of maximizing patients’ throughput is considered more 
important than cost consideration, and it is difficult to estimate accurately the cost of a 
patient waiting for service. As a result, optimality criterion in healthcare service systems 
design may not be determined in terms of cost and revenue. It was the purpose of this study 
to redesign patient service in the radiodiagnostic facility of the University of Port Harcourt 

Teaching Hospital, using an M/M/c/GD// queuing model, to highlight the impact of the lag 
time between patients’ arrival at the facility and the actual commencement of service, 
rescheduling different classes of patients, and segregating outpatients into priority groups 
according to the complexity and perceived duration of their cases, on the system’s 
performance. In this notation, the symbols, M stand for ‘Markov’ indicating that the number 
of arrivals and the number of completed services in time t follow Poisson process which is a 
continuous time Markov chain15, 16, 17, c stands for the number of service channels, GD stands 
for general queuing discipline, and / stands for unlimited expected number of patients in 

the queue and an infinite size of population from which the patients are drawn.  
 
METHODOLOGY 
The patients’ service schedule was altered so that only out patients were allowed service 
during the peak periods of 8.00 a.m. to 1.00 p.m.  Of every working day (Monday through 
Friday) for 6 months (July to December, 2007). Outpatients who presented after 12 noon 
were rescheduled for the next day. Data of the time of arrival, time of entering into service, 
and the time a service was completed were collected prospectively from all outpatients who 
presented for medical x-ray imaging in each month of the period of study. These times were 
recorded for each of the patients sampled. The facility had two functional diagnostic rooms 
hence, the data were organized into hourly time periods and presented in tabular form as the 
structure of hourly arrival, and hourly departure from each of the two diagnostic rooms  
designated rooms 1 and 2 respectively. These were recorded for 6 consecutive months. The 
cases were divided into two groups according to their complexity and perceived service 
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duration. All chests and the extremities were done in room 1 while other cases were done in 
room 2. We considered x-ray imaging of outpatients only as work on all the demand streams 
and imaging modalities was considered to be too cumbersome for the purpose of this study.  
 
Frequency distribution tables were generated for the arrival rate, and service rates 
(departure rates) and the expected frequencies computed for each of the 6 months. The 
arrival and service rates data were then fitted to the Poisson model, and the goodness of fit 
test conducted using the chi-square statistic to ascertain the adequacy of the model. The 

mean arrival rate,  and the mean service rate,  for diagnostic rooms 1 and 2 were 

calculated and the values were used to determine the utilization factor,  (i.e. the fraction of 

time the service facility is busy), the steady state probabilities, and the operating 
characteristics (measures of performance) of the system for each month. In this facility, 
registration and documentation of patients’ data commences at 8.00a.m. but imaging 
procedures actually commences at 9.00a.m. Hence, a sample size, N = (5hours x No. of days 
worked in the month) hours was used to fit the arrival rate 

Data to the Poisson model, !
)(

x
exf

x 
 


  and a sample size, N = (4hours x 

No. of days worked in the month) hours was used to fit the service rate data of diagnostic 

rooms 1 and 2 to the Poisson model, !
)(

x
e

xf
ix

i

 
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  respectively, i = 1, 2. 

 
THE MODEL 

The model is essentially M/M/2/GD// with modification to the formulae for the 

measures of performance occasioned by the increase in the queue length due to the time lag 
between patient arrival at the facility and actual commencement of imaging service. The 
modified queue length,  

nttm qqq LLL
,.......,2,10 


    Where, 

0tqL
is the expected (mean) number of patients waiting in queue before commencement 

of service. 

ntqL
,....,2,1 is the computed steady-state expected (mean) number of patients waiting 

in queue (where n = hourly time periods of service). This and the steady-state probabilities 
were computed using the TORA primer optimization software. 
The other steady-state measures of performance and steady-state probabilities were 
computed using the following formulae: 

1.       
m

m

q
q

L
W 

       2.         

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3.         
1

mqs WW
     Where    c

21 





 

mqL
 = mean number of patients waiting in the queue 

mqW
 = mean waiting time 

Ls = mean number of patients in the system (i.e. patients in queue plus those      being 
served) 
Ws = mean transit time from entering to leaving the system (including the waiting time).  

4. )1(!

)(
)( 0








c

c
cnP

c

 This is the steady-state probability that all servers are busy 

(i.e. the probability that an arrival has to wait), where 0 is the probability of zero patient in 

the queue and zero server is busy,  =  /c and c = number of service channels. 

5. The probability that room 1 is idle = 0 + [ 1 / (1 + 2) ]1  

6. The probability that room 2 is idle = 0 + [ 2 / (1 + 2) ]1  
 
The rate of joining the queue given that already there are i patients in the system was 

calculated using the relation i = i  , (Grassmann,1979) where i = the rate at which new 

patients join the queue,  = the mean arrival rate, and i  = the probability of a patient 

joining the queue given that there are already i patients in the system. i was calculated 
using the formula  

   









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
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RESULTS 
The goodness of fit test showed that the model was adequate as the arrival and service rates 

data fitted the Poisson model. For the arrival rate data, 2 = 3.6866 < 2
10, 0.05 =18.307 thus 

implying a good fit of the data to the Poisson model at 0.05 level of significance. For the 

departure rate (from room1) data, 2 = 10.2364 < 2
10, 0.05 =18.307  while for the departure 

rate (from room2) data,2 = 4.7357  <  2
6, 0.05 = 12.592 thus implying a good fit of the data 

to the Poisson model at 0.05 level of significance. The arrival rate,  for the period of study = 

11.87 patient/hour. The service rate for room 1, 1 =11.07 patient/hour and the service rate 

for room 2, 2 = 3.77 patients/hour. The mean service rate,  = 7.42 patients/hour. The 

utilization factor,  =  / (1 + 2) = 0.79987  0.8, implying that the facility was busy 80% 

of the time. The probability that room 1 is idle = 0.24388 and the probability that room 2 is 

idle = 0.15638. The probability that an arrival has to wait, P(n  c) = 0.71162. The mean 
number of patients waiting before commencement of service at 9.00 a.m., Lqt=0 = 9.75591 
and the steady-state mean number waiting in queue for service, Lqt=1,2,…,n = 2.84131. 
Therefore, the effective queue length, Lqm = 9.75591 + 2.84131 = 12.59722 patients. The 
other performance measures, Wqm = 1.06127 hours, Ls = 14.19695 patients, and Ws = 
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1.19604 hours. The probability of a patient joining the queue given that there are already i 

patients in the system, i = 0.0312 and the rate of joining the queue given that there are 

already i patients in the system, i = 0.37034patients per hour ( 1patient in 3hours). There 

was improvement in the outpatient throughput consequent on the redesigning of the facility 
as shown in table 5.  
 
Table 1: Structure of hourly arrival of patients to the facility 

Mo
nth 

of 
stu

dy 

No. 
of 

days 

8 - 9 
a.m. 

9 - 
10 

a.m.  

10 -
11 

a.m.  

11 -
12 

p.m.  

12 -1 
p.m. 

TOTAL MEAN 
ARRIVAL 

RATE,  

July 20 215 298 327 273 186 1299 12.99 

Aug

ust 

23 247 273 290 298 232 1340 11.65 

Sept

. 

20 198 315 319 267 193 1292 12.92 

Oct. 23 234 264 282 235 189 1204 10.47 

Nov. 22 206 301 350 274 186 1317 11.97 

Dec. 19 139 246 297 278 125 1085 11.42 

TOT

AL 

127 1239 1697 1865 1625 1111 7537 11.87 

 

Table 2: Structure of hourly departure of patients from diagnostic room 1 

Month 

of 

study 

No. of 

days 

9 - 10 

a.m. 

10 - 

11 

a.m. 

11 - 

12 

noon 

12 - 1 

p.m. 

Total Mean 

Service 

Rate, 1 

July 20 286 272 248 184 990 12.38 

Aug. 23 290 301 236 181 1008 10.96 

Sept. 20 265 293 250 177 985 12.31 

Oct. 23 248 266 272 107 893 9.71 

Nov. 22 198 290 279 215 982 11.16 

Dec. 19 223 237 214 91 765 10.07 

Total 127 1510 1659 1499 955 5623 11.07 
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Table 3: Structure of hourly departure of patients from diagnostic room 2 

Month 

of 
study 

No. 

of 
days 

9 - 10 

a.m. 

10 - 11 

a.m. 

11 - 12 

noon 

12 - 1 

p.m. 

 Total Mean 

Service 

Rate, 2 

July 20 67 70 82 90 309 3.86 

Aug. 23 75 97 86 74 332 3.61 

Sept. 20 70 81 73 83 307 3.84 

Oct. 23 69 79 91 72 311 3.38 

Nov. 22 84 77 79 95 335 3.81 

Dec. 19 73 80 78 89 320 4.21 

Total 127 438 484 489 503 1914 3.77 

 
Table 4: The steady-state probabilities of the system 

 
Table 5: Record of outpatients x-rayed between January and December, 2007 

JANUARY 825 JULY 1,299 

FEBRUARY 826 AUGUST 1340 

MARCH 960 SEPTEMBER 1292 

APRIL 850 OCTOBER 1204 

MAY 961 NOVEMBER 1317 

JUNE 986 DECEMBER 1085 

TOTAL 5408  7537 

 
 

n n n n n n n n n n 

0 0.11119 9 0.02980 18 0.00399 2

7 

0.00054 36 0.00007 

1 0.17788 10 0.02384 19 0.00319 2

8 

0.00043 37 0.00006 

2 0.14228 11 0.01907 20 0.00256 2

9 

0.00034 38 0.00005 

3 0.11381 12 0.01525 21 0.00204 3
0 

0.00027 39 0.00004 

4 0.09103 13 0.01220 22 0.00163 3
1 

0.00022 40 0.00003 

5 0.07281 14 0.00976 23 0.00131 3

2 

0.00018 41 0.00002 

6 0.05824 15 0.00780 24 0.00105 3

3 

0.00014 42 0.00002 

7 0.04658 16 0.00624 25 0.00084 3

4 

0.00011 43 0.00002 

8 0.03726 17 0.00499 26 0.00067 3
5 

0.00009 44 0.00001 
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DISCUSSION 
Queuing theory is a powerful quantitative tool that enables healthcare facilities to uncork 
chronic bottlenecks in the flow of patients and to determine capacity levels (and the 
allocation of capacity) needed to respond to demands in a timely fashion (minimizing the 
delay). However, we discovered in the course of this study that queuing theory is not 
monolithic. Different models are needed to solve different types of problems. Efficiency of a 
queuing model may be evaluated by the measures of performance especially, when the cost 
and revenue structure of the system is inaccessible. In this wise, optimal design of queues 
would, at best, be described as optimal control of queues. Our result showed that 
rescheduling, and segregating the patients into different service channels impacted positively 
on the systems performance (service in room1 is 3 times faster than in room2). This is in 
agreement with previous studies8, 9, 18. The time lag between patient arrival to the facility and 
the actual commencement of imaging procedures impacted negatively on the performance of 
the facility as it increased the expected queue length and waiting time. The calculated rate 
(0.37034patients/hour) at which new patients will join the queue suggests an inefficient 
system despite the overall improvement in the patients’ throughput. However, we believe 
that if the facility can commence service at 8.00 a.m. as the patients arrive, the queue length 
and waiting time will reduce considerably. Assuming that the effective service rate remains 

the same as computed ( = 7.42 patients/hr.), the queue length and the expected number of 

patients in the system will reduce to Lqm  3 patients and Ls  5 patients respectively. And, 

the probability of a new patient joining the queue given the number of patients, i already in 
the system, and the rate of joining the queue will increase as shown in the computation 
below:  

Given i  Ls = 5 patients, i  = the steady state probabilities of 6, 7, 8, ….., patients in the 
system. That is,  

i = 6 + 7 + 8 + ……..   = 1 - (0 + 1 + 2 + 3 + 4 + 5 )  

= 1 - 0.709 = 0.291. The rate of joining the queue, i become  

i = 0.291 = 0.291 x 11.87 = 3.45417patients / hr. ( 4patients / hr.). 
 
CONCLUSION  
This study evaluated the application of queuing theory to the problem of patient service 
design in a healthcare facility, and we came to the conclusion that  patient service can be 
optimized using the queuing theory but, service must commence as the patients arrive  in 
order to achieve optimal performance. Secondly, performance of a queuing system may just 
be specified in terms of probabilities. As it is not certain that these results can be generalized, 
a further research in this area is recommended. 
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