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ABSTRACT

The time plot of the original series NCOE reveals a negative secular trend between 2006
and 2009 after which the trend tends to be increasing up to 2011. Seasonality is not so
evident. A twelve-month (i.e. seasonal) differencing was done to yield the series SDNCOE
with a generally positive trend and not so regular seasonality. Further nonseasonal
differencing yielded a series DSDNCOE with no trend. Its correlogram reveals a
seasonality of order 12, a seasonal moving average component of order 1 and an
autocorrelation structure of a (0, 1, 1)x(0, 1, 1);» model. Therefore the model was
proposed and fitted to the series. Diagnostic checking results show that the model is
adequate.
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INTRODUCTION

A time series may be defined as a sequence of data collected at times often equally
spaced. Such a sequence usually exhibits a tendency of having correlated neighbouring
values. This tendency is called autocorrelation. A time series is said to be stationary if its
mean and variance are invariant under a translation along the time axis. Moreover, the
autocorrelation is a function of the time lag separating the correlated values. This is called
the autocorrelation function, ACF. Nonstationary nature easily shows up in the time-plot
and the plot of the ACF. Besides the requirement of stationarity is that of /nvertibility
which refers to the property whereby corresponding to a model there is a unique
covariance structure (Priestley, 1981).

A stationary time series {X} is said to follow an autoregressive moving average model of
order p and q (denoted by ARMA(p, q)) if it satisfies the following difference equation

X=Xy —a, X, ——a X =& + P&+ P, +t P&, (1)
Or
(1- oyl - aal? - ... = aplP)Xe = (1 - BiL - Pol? - ... - Bl %er
(2)
Or

A( L)Xt = B(L)St
3)
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where L is the backshift operator defined by LX; = X« and the a's and the B's are
constants such that for stationarity and invertibility A(L) and B(L) have zeroes outside the
unit circle respectively. The sequence {s} called a white noise process involves random
variables that are uncorrelated and have zero mean and constant variance.

If g = 0, model (1) is called an autoregressive model of order p (denoted by AR(p)). If,
however, p = 0, the model is called a moving average model of order g (denoted by
MA(qQ)). An AR(p) model may be more specifically written as

Xy =0 Xy =0, Xy == Xy =8+ & + B, +ot BiE,

The sequence of the last coefficients {a;i} is called the partial autocorrelation function
(PACF). While the PACF of an AR(p) cuts off at lag p, the ACF of an MA(q) cuts off at lag
g. This serves as a guide for preliminary model identification. For a nonstationary series,
Box and Jenkins(1976) proposed that the nonstationarity could be got rid of by
differencing of the series to an appropriate order d. The d™ difference of a series {X} is
the series {VIX;} where v = 1 — L. Differencing is usually done on the series progressively
from order 1 until stationarity is attained.  Suppose stationarity is attained at the d™
difference. If an ARMA(p, q) model is fitted to the differenced series, the original series
{Xt} is said to follow an agutoregressive integrated moving average model of order (p, d,
g), denoted by ARIMA(p, d, q). Seasonality refers to a tendency for a time series to show
periodic behaviour after regular intervals of time. A time series {X:} is said to follow a
multiplicative (p, d, qQ)x(P, D, Q)s seasonal autoregressive integrated moving average
model if

AL)D(L)VIVPX: = B(L)O(L%)e:

(4)

where

O(L) =1+ ¢sL + ... + opL”
(5)

O(L) =1+ 01L + ... + 6L
(6)

and the coefficients ¢’s and 0’s are such that the zeroes of the polynomials (5) and (6) are
outside of the unit circle for stationarity and invertibility respectively. Seasonality is often
evident from the time plot as a periodic movement. Moreover the correlogram (i.e. the
ACF plot) of a seasonal series is such that there is a spike at the seasonal lag. Seasonal
ARIMA models are extensively discussed in Box and Jenkins (1976) and Madsen (2008),
to mention but a few publications.

MATERIALS AND METHODS

The data for this work is from the Central Bank of Nigeria publication on the website
www.cenbank.org . The data are the seventy two monthly crude oil exports expressed in
million barrels per day for the years 2006 to 2011 and published under the Data and
Statistics heading.
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Determination of the orders p, d, q, P, D and Q
Knowledge of the theoritical properties of the models provides basis for the determination
of the orders. For instance, the cutting-off of the ACF is indicative of an MA model of
order equal to the cut-off lag q whereas the cutting-off of the PACF indicates an AR model
of order equal to the cut-off lag p. A negative spike at the seasonal lag indicates
seasonality as well as the involvement of a seasonal MA component of order 1. A positive
spike at the seasonal lag shows seasonality that involves a seasonal AR component of
order 1. The nonstationary series shall be differenced once seasonally. That is, D = 1. If
there is no stationarity the series shall be differenced once, nonseasonally. That is, d = 1.
It is noteworthy that an autocorrelation that is within + 2/Yn, where n is the sample size,
is not considered statistically significant.

Model Estimation

The involvement of items of a white noise process in an ARIMA model calls for nonlinear
optimization techniques for model estimation. An initial estimate is usually made and
employed in an iterative convergent process until an optimum estimate results within the
stipulated limit of accuracy. The optimization criterion adopted could be the least sum of
squares approach, the maximum likelihood approach or the maximum entropy approach,
to mention only a few. However linear optimization methods have been proposed and
used for pure AR and pure MA models (See for example Box and Jenkins(1976) and
Oyetun;ji(1985)). Attempts have also been made to apply linear optimization methods to
estimate mixed ARMA models (See for example Etuk(1987, 1998)). In this work Reviews
software which employs the least squares approach shall be used.

Diagnostic Checking: To check for goodness-of-fit of the model to the data some
residual analysis shall be done. Under the assumption of model adequacy the residuals
should be uncorrelated, have zero mean and constant variance and follow a normal
distribution.

RESULTS AND DISCUSSION
The time plot of the series NCOE in Figure 1 shows an downward secular trend from 2006
to 2009 and an upward one from then to 2011. Seasonality is not obvious. Seasonal
differencing once yielded SDNCOE with an overall upward trend as shown in Figure 2.
Nonseasonal differencing of SDNCOE yielded DSDNCOE with no trend (See Figure 3) but
with correlogram showing a negative spike at lag 12, depicting seasonality of order 12
and a seasonal MA component of order 1. A spike at lag 1 in the ACF suggests the
involvement of a nonseasonal MA component of order one. A (0, 1, 1)x(O, 1,
1)12 seasonal model
DSDNCOE; = Biet-1 + Progr-12 + P13gr-13

(7)
Is therefore proposed. By Eviews, the estimation of the model yielded the results as
summarized in Table 1. It is noteworthy that of the coefficients only Bi3 = 0.2015 is not
statistically significant, being less than twice its standard error. The adequacy of the
model is not in doubt given the close agreement of the fitted model and the data (See
Figure 5), and the normal distribution of the residuals with zero mean (See Figure 6).
Moreover, the correlogram of the residuals in Figure 7 is such that none of the 24
autocorrelations is statistically significant.
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CONCLUSION
It may be concluded that monthly Nigerian Crude Oil Exports follow a (0, 1, 1)x(0, 1, 1)1»
model. This has been shown to be adequate.
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Date: 0922112 Time: 14:05
Sample: 2006:01 2011:12
Included observations: 59
Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob
1 -0.358 -0.356 7.96710 0.005
2 0.068 -0.069 5.2542 0.016
3 -0.026 -0.028 5.2974 0.040
4 -0.089 -0.119 5.8131 0.066
5 -0.146 -0.258 10.231 0.069
6 0.109 -0.053 11.0340EH
7 0,047 0.078 11187 013
8 0118 0176 12171 0144
9 0072 0178 12545 0184
10 -0.018 0.088 12.570 0.2459
11 0.088 0.224 13145 0.284
12 -0.335 -0.183 21.738 0.041
13 0111 -0.063 22.705 0.045
14 0.021 0.056 22741 0.065
15 -0.106 -0.153 23.654 0.071
16 0.098 -0.132 24.451 0.080
17 0.085 -0.092 25.064 0.093
18 -0.172 -0.218 27.675 0.067
19 0.091 -0.062 28427 0.076
20 0.004 0.0VE 25428 0.100
21 -0.084 0063 29.091 0.112
22 0.013 0.044 29107 0142
23 0.040 0167 29267 0172
24 -0.057 0.018 29598 0.198
FIGURE 4: CORRELOGRAM OF DSDNCOE
Dependent Variable: DSDNCOE
Method: Least Squares ]
Date: 09/22/12 Time: 14:16
Sample(adjusted): 2007:02 2011:12
Included observations: 59 after adjusting endpoints
Convergence not achieved after 100 iterations
Backcast: 2006:01 2007:01
Variable Coefficient  Std. Error  t-Statistic  Prob.
MA(1) -0.431922 0111051 -3.8893%4  0.0003
MA[12) -0.70202% 0097761 -7.18109%  0.0000
MA[13) 0201473 0112522  1.790585  0.0738
R-squared 04625872 Mean dependent var -0.000678
Adjusted R-squared 0443683 5.D. dependent var 0160987
S.E. of regression 0120074  Akaike info criterion -1.351907
Sum squared resid 0807396 Schwarz criterion -1.246269
Log likelihood 4288124 F-statistic 2412912
Durbin-Watson stat 2078798  Prob(F-statistic) 0.000000
Inverted MA Roots .99 86+ 48 .86 -.48i B0 -84
B0+ .84 .29 01+.97i 01 -97
- 48+ 841 -48-84i -.B3+.48i -.83 - 48i
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FIGURE 6: HISTOGRAM OF THE RESIDUALS Series: Residuals

Sample 2007:02 2011:12
Observations 59

Mean 0.018213
Median 0.015514
Maximum 0.333984
Minimum -0.212434
Std. Dev. 0.116547
Skewness 0.421946
Kurtosis 3.236667

Jarque-Bera  1.888409
Probability 0.388989

-0.125 0.000 0.125 0.250
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Date: 09/27/12 Time: 20:39
Sample: 2007:02 2011:12
Included observations: 59
(-statistic probabilities adjusted for 3 ARMA term(s)

Autocorrelation Partial Correlation AC PAC Q-5Stat Prob

1 -0.065 -0.065 0.2640

2 0.064 0.060 05199

3 -0.068 -0.061 0.8203

4 -0.139 0152 20814 0.148
5 -0.151 0167 3.6051 0.165
6 0.085 0.07% 4.0968 0.251
7 0146 0171 556778 0.233
g 0.139 0124 69402 0225
8 0103 0.073 7.7100 0.260
10 -0.008 0.003 7.7153 0.358
11 -0.046 0.024 78711 0.445
12 -0.178 -0.108 10291 0.327
13 -0.002 0.005 10291 0415
14 -0.012 -0.015 10302 0.503
15 -0.074 -0.164 10746 0.551
16 -0.020 -0.152 10.781 0.629
17 0.049 -0.021 10984 0.687
18 -0.121 -0.110 12275 0.658
19 0.062 0.051 12.620 0.700
20 -0.074 -0.053 13121 0.728
21 -0.085 -0.094 13.807 0.742
22 -0.044 -0.024 13991 0.784
23 0.094 0158 14872 0.784
24 -0.115 -0.051 16.220 0.757

FIGURE 7: CORRELOGRAM OF THE RESIDUALS
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