
13

ECONOMIC MODELS FOR SOFTWARE SECURITY

Akwuwuma Veronica and Egwali Annie

Department of Computer Science
 University of Benin, Benin City, Nigeria

E-mail: vakwukwuma@yahoo.com; egwali.annie@yahoo.com

ABSTRACT
The economics of software security is an evaluation of the cost and benefits of adding security
to software. Most firms are mainly concerned with making software functional without paying
much consideration to security because of the rigors of adding security to software and
because buyers have no low cost method of ascertaining quality. These nonchalant practices
will only give attackers an upper hand in the race for compromising system software. It is
crucial therefore that software developer protect their customers by embedding security and
confidentiality into their software. Security should be a factor in software development
undermining the cost. In this paper, we therefore focus on the economics of building security
properties into software application. To cover the entire dimension of the economics of
software security, we incorporate cost-benefit analysis models[1] to incur the cost of adding
security properties into software development. We also expanded our security framework to
integrate the security properties[2] and incorporated encryption, TCP/IP hardening and Buffer
overflow checks.
 Keyword: Cost, Security, Software, Economics, Attacks

INTRODUCTION
In our world today, the presence of door locks, gated communities, guard dogs, access cards
and identification badges are all testaments to a physically insecure world. Likewise, the need
for similar protective mechanisms is no less significant as our digital world is an every bit as
insecure as our physical one. The public has become more conscious of the need for software
security and so too has the government. In a digitally secured world, there would be no need
for investing in secure software but the reverse is the case. These days, most software
developers are concerned more about functionality alone and disregarding security because
many firms are not willing to invest in secure software development and so the major software
deployed in our digital world is insecure. This is coupled with the fact that buyers has no low
cost method for ascertaining quality and the cost of insecure code is often borne by someone
else (a negative externality). The importance of building in security at an early level in the
software development life cycle was highlighted[3], stating that security should be implemented
at the requirements level of the software development life cycle (SDLC) and after deployment,
and that knowledge gained by understanding attacks and exploits should be cycled back into
the SDLC.

The central principle of the strategic software design thought us that software design is an
investment activity, involving the expenditure of valuable resources, whose goal is to maximize
value added net to costs on a scale appropriate to a given context. Thus the value of a
software system reflects both its fitness to meet current needs and its capacity to evolve to
sustain fitness as conditions change over time. Thus the security level provided by developers
is consistently lower than it should be. For one to invest in secure software building, threats to
software security must be understood.

© 2010 Cenresin Publications

www.cenresin.org

Volume 2, September 2010

Journal of Physical Sciences and Innovation

mailto:vakwukwuma@yahoo.com
mailto:egwali.annie@yahoo.com

14

Presently there are several threats to software systems [4]. Among which are viruses, worms
and Trojans. It was posited that viruses are programs that threaten the security of most
software product[5]. He defined a virus as a self-replicating program that injects itself to a host
and then keeps attaching itself to other programs in a system it infects thereby causing
damage. As for worms, it copies itself from computer to computer causing damages. Trojans
are also programs that pretend to be useful but that either contain harmful code or are just
plain harmful[6].

Despite these varieties of software threats, many software developed lack security features to
battle with the ever attacking malicious software. General security principles that should be
applied in secure software development were outlined as[2]:

- Authentication (who a user is)
- Authorization (what a user can do)
- Confidentiality (what a user can see)
- Non-repudiation (did a user really perform an action)
- Availability (the system is ready for user activity)

It was further stressed that because one would not find all the bugs in the software, or the
entire inherent vulnerabilities and will have errors of omission and oversight, therefore every
secure designer should define threats, assess the impact of vulnerably in the software and then
implement a countermeasure[2]. Unfortunately, these security principles pose a challenge
during the actual design of software. The more secure a system is, the less usable it usually
becomes and that is normal and cannot be counteracted. For software systems to stay usable
and attractive to customers, tradeoffs have to be made in terms of cost, usability, security,
portability and memorability. Also, the testing process is time consuming. The developer
needs to probe the system like an attacker would and have to make use of white box testing,
which can increase the cost of production considerably as believed by many software
developers. As for security breaches, current practices grossly underestimate the cost of
security breaches, which leads to under investment in security.

This paper therefore focuses on the economics of building security properties into software
application. To cover the entire dimension of the economics of software security, we
incorporate the cost-benefit analysis models[1] to incur the cost of adding security properties
into software development. We also expanded our security framework to integrate the security
properties[2] and incorporated encryption; TCP/IP hardening and Buffer overflow checks.
Section 2 contains a review of related materials. The cost-benefit analysis model proposed was
discussed in section 3; this is followed by our conclusions.

Related Works
There are several cost analysis models which have been used in making decisions regarding
secure or insecure software products. A cost-benefit method of selecting different software
development processes that essentially tried to trade off functionality and delay, was
proposed[7]. It was asserted that it is difficult to compare and contrast models of software
development because their proponents often use different terminology, and the models often
have little in common except their beginnings (marked by a recognition that a problem exists)

Economic Models for Software Security

Akwuwuma Veronica and Egwali Annie

15

and ends (marked by the existence of a software solution)[7]. A framework provided was limited
to serve just as a basis for analyzing the similarities and differences among alternate life-cycle
models; as a tool for software engineering researchers to help describe the probable impacts of
a life-cycle mode; and as a means to help software practitioners decide on an appropriate life-
cycle model to utilize on a particular project or in a particular application area.

An optimization model was proposed in which the total benefits (B) and total costs (Tcost)
associated with different levels of information security (S) activities are accessed on an ex ante
basis, the goal was to implement security procedures up to the point where the difference (gain
(G)) were maximum[8]. For expatiation, let us assume that the dollar value of the benefits from
information security activities increase at a decreasing rate. Also on the cost side, let us
assume the variable portion of such costs are initially increasing at a decreasing rate, but
eventually increase at an increasing rate, relative to increasing levels of information security.
Furthermore, we also assume that once a decision (either explicit or implicit) is made to have
some level of information security, a firm will incur a lump-sum fixed cost (for such things as
personnel and software items). The above idea can be illustrated in terms of a graph shown in
figure 1. As shown in the figure 1, S* is the point where the difference between the benefits
and costs is greatest. Thus, the ex ante goal would be to implement information security
procedures up to that point. In more formal terms, the value S* that maximizes G(S) = B(S) –
Tcost (S) is characterized by the condition given in equation 1 shown below:
 (1)

i.e.

Figure 1: Level of Information Security (Gordon, 2003)

An alternative way to view the above discussion is to consider the benefits of information
security as costs of not having such security. Under this view, the goal would be to minimize
the sum of the costs associated with information security breaches and the costs associated
with implementing information security procedures. Figure 4 provides a graph illustrating this
approach. Here again, S* would represent the optimal level of information security to an
organization.

D
o

lla
r

V
al

u
e

o
f

C
o

st
s

o
r

B
en

ef
it

s

Costs

Benefits

Net Benefits

dG = dB - d Tcost = 0

dS dS dS

dS dS i.e. dB = d Tcost or marginal benefits = marginal costs

 dS dS

Volume 2, September 2010

Journal of Physical Sciences and Innovation

16

Figure 2: Level of Information Security (Gordon, 2001)

A framework was proposed that estimates the cost of software security breaches as the loss in
market value of the firm due to security breach announcement[9]. Security breaches signal to
the market a lack of concern for customer privacy and/or poor security practices within the
firm. These signals in turn lead investors to question the long-term performance of the firm.
In efficient markets, investors believed to revise their expectations based on new information in
announcements and reflect those expectations in the market value of the firm. Using investors’
reactions in capital markets as a proxy to estimate security breach cost, findings revealed that
the publicly traded breached firms, on average, lost approximately 2.1% of their market value
within two Days surrounding the security breaches. This percentage translated into a $1.65
billion average loss in market capitalization per breach based on the mean market value of
firms in their data set. The average market value loss increased over time, which suggests that
investors are becoming more aware of the security issues and are likely to penalize firms more
for security breaches. A shortfall in the framework is that the magnitude of the loss was the
same across different breach types.

[10] presented a model of network security and software piracy and contrasted two policies that
a software vendor could enforce: (1) restriction of security patches only to legitimate users or
(2) provision of access to security patches to all users whether their copies are licensed or not.
They found that when the software security risk is high and the piracy enforcement level is low,
or when tendency for piracy in the customer population is high, it is optimal for the vendor to
restrict unlicensed users from applying software security patch restrictions is optimal for the
vendor only when the piracy enforcement level is high.

[11] presented a net present value (NPV) model in which the present value is the value of a
stream of future cash flows, negative or positive. The value of each cash flow needs to be
adjusted for risk and the time value of money. The net present value (NPV) includes all cash
flows including initial cash flows such as the cost of purchasing an asset, whereas a present
value does not. The simple present value is useful where the negative cash flow is an initial
one-off, as when buying a security. A discount rate needs to be used to adjust for risk and
time value, and it is applied like this:

NPV = CF0 + CF1/(1+r) + CF2/(1+r)2 + CF3/(1+r)3 …

D
o

lla
rs

 C
o

st
s

Total costs related to

Information Security

Expenditures on

Information Security Costs from not

having

Information

Security

Economic Models for Software Security

Akwuwuma Veronica and Egwali Annie

17

Where CF1 is the cash flow the investor receives in the first year, Cf2 the cash flow the investor
receives in the second year etc. The series will usually end in a terminal value, which is a
rough estimate of the value at that point. It is usual for this to be sufficient far in the future to
have only a minor effect on the NPV, so a rough estimate, usually based on a valuation ratio, is
acceptable. Periods other than a year could be used, but the discount rate needs to be
adjusted. Assuming an annual discount rate is used initially, then to adjust to another period,
given a rate i, annual rate r, for a period x, where x is a fraction (e.g., six months = 0.5) or a
multiple of the number of years, then the following expression suffices:

i + 1 = (r + 1)x

To use discount rates that vary over time (where r1 is the rate in the period, r2 the rate in the
second period etc.) we would have to resort to a more basic form of the calculation:

NPV = CF0 + CF1/(1+r1) + CF2/((1+r1) x (1+r2)) + CF3/((1+r1) x (1 + r2) x (1+ r3)) …

This is tedious to calculate by hand but is fairly easy to implement in a spreadsheet, after
making such calculations on a secure or insecure software sample, a decision can be made as
to whether a software product should be accepted or rejected based on the results.

PROPOSED COST-BENEFIT ANALYSIS MODEL
Cost-benefit analysis is a term that refers both to helping to appraise, or assess the case for a
project or proposal, which itself is a process known as project appraisal; and an informal
approach to making decisions of any kind. Under both definitions the process involves,
(explicitly or implicitly), weighing the total expected costs against the total expected benefits of
one or more actions in order to choose the best or more profitable option in software
production. The formal process is often referred to as either CBA (Cost-Benefit Analysis) or BCA
(Benefit-Cost Analysis). The decisions as to whether to practice secure software development
or not could be gotten from the results of the Cost-Benefit Analysis.

Some formulas were proposed that can be used for calculating the benefits and costs of adding
security properties to software[1]. To calculate the benefits gained from adding security to the
software project, the following information was gathered:

(i) Program Size: The program’s size in number of source lines of codes.
(ii) Bug Frequency: The number of bugs both security and non-security bugs) that

appear in the program per thousand source lines of code.
(iii) Cost Incurred from Bugs: The overall cost per bug.

The program size is a fairly easy number to ascertain from anyone on the development team,
and recent research indicates that it may be possible to roughly determine the number of lines
of code from a compiled program based on file size. Bug frequency is a combination of the
total number of non-security bugs plus the total number of security bugs that occur per
thousand line of code. Research currently indicates that the number of security bugs per
thousand lines of code ranges from around 1 to 6. The costs incurred from bugs are divided
into pre-release costs and post-release costs. The following information is required to
determine the cost components:

Volume 2, September 2010

Journal of Physical Sciences and Innovation

18

Pre-release Components

 The percentage of bugs detected and fixed pre-release
 The average cost per bug fix pre-release

Post-Release Component

 The percentage of security bugs believed to be discovered and exploited by attackers
(this number may be a guess on the part of the user, so it is best to try running the
program with a series of guesses to build up a range of values).

 Public relations costs, including the amount of effort expended in terms of man month
plus any additional cost incurred.

 Legal costs, including the amount of effort expended in terms of man month plus any
additional cost incurred.

 Client support costs in term of man month expended.
 The effort on future sales revenue lost due to a security breach. Sales are assumed to

recover after one year.
 Additional incidental costs in dollars.
 He overall cost involved in diagnosing a problem post-release in man month plus

incidentals.
 The overall cost involved in patching software post-release in man month plus incidental.
 The overall cost involved in software testing post-release in man months plus incidentals.
 The user’s average cost per man month.

Benefit Analysis
There are two separate equations used in the benefit analysis. The Expected Cost Pre-Security
(ECPre), which calculates the expected losses before security is added, and the Expected Cost
Post-Security (ECPost), which calculates the expected costs after security is embedded into the
software. The equations are as follows:

Equation 1
Expected Cost Pre-Security (ECPre) = (PreRcom + Excomp + PostRcomp) * NObug * Psize

PreRcom = (%DPpreR * PreRfix-cost)
Excomp = ((Numbugs / (Numbugs + NumNbugs)) * (1 - %DPpreR)* (%bugexp * Tcost))

PostRcomp = (1 - %DPostR)*PostRT)
NObug = Secbug +NonSecbug

Psize = NoLineC / 1000
PostRT = TDCost + TPCost +TTCost
Tcost = TPRcost +Tlcost+ TclientScost + Lprof + Ocost

Lprof = (%Slost * TsalesG) * Pmargin

Where PreRcom is the pre-release component, Excomp is the exploit component, PostRcomp is the
post-release component, NObug is the number of bugs, Psize is the project size, %DPpreR is the
percentage of bugs discovered during software pre-release stage, PreRfix-cost is the pre-release
fix cost, Excomp is the exploited components, Numbugs is the number of security bugs, NumNbugs
is the number of non security bugs, %DPpreR is the percentage of bugs discovered during the
pre-release stage, %bugexp is the percentage bugs exploited, Tcost is the total costs, TPRcost is the
total pre-release costs, Tlcost is the total legal cost, TclientScost is the total client support costs,

Economic Models for Software Security

Akwuwuma Veronica and Egwali Annie

19

Lprof is the loss profits, Ocost is the other costs, %Slost is the percentage of sales lost, TsalesG is the
total sales revenue generated, Pmargin is the profit margin, Secbug denotes security bugs,
NonSecbug denotes non security bugs, NoLineC is the number of line of code, %DPostR is the
percentage of bugs discovered during software post-release stage, PostRT is the post release
total, TDCost is the total diagnostic cost, TPCost is the total patch and TTCost is the total testing
cost.

Equation 2
Expected Cost Post-Security (ECPost) = (PreRcom + Excomp + PostRcomp) * NObug * Psize

PreRcom = (%DPpreR * (1 +Inc%DpreR) * PreRfix-cost)
Excomp = ((Numbugs / (Numbugs + NumNbugs)) * (1 - %DPpreR)* (%bugexp * Tcost))

PostRcomp = (1 - %DPostR)*(1 + Inc%DpreR) * PostRT
NObug = Secbug +NonSecbug

Psize = NoLineC / 1000
PostRT = TDCost + TPCost +TTCost
Tcost = TPRcost +Tlcost+ TclientScost + Lprof + Ocost

Lprof = (%Slost * TsalesG) * Pmargin

Where Inc%DpreR denotes increase in percentage discovered during the pre-release stage.

Equation 3
Total Benefit (Tben) = Equation 1 – Equation 2

ECPre - ECPost
In combination to the cost-benefit analysis implicitly, weighing the total expected costs against
the total expected benefits of one or more actions in order to choose the best or more
profitable option. The formal process is often referred to as either CBA (Cost-Benefit Analysis)
or BCA (Benefit-Cost Analysis). The decisions as to whether to practice secure software
development or not could be gotten from the results of the Cost-Benefit Analysis.

Security Costs Analysis
To calculate the cost of secure software development, measuring factors that must be
considered when adding security to the software development were posited including major
costs that may be incurred. Major cost items involved:

i. Use of new CASE tools or hardware / software that is required for developing secure
software. If these tools are generic and can be used with other projects as well, their
capital costs should be appropriated appropriately.

ii. User training – security requirements may require the firm to provide the developers
some training. The costs are two folds:

a. there is the direct cost of training (i.e. hiring and paying someone to train
employees;

b. there is an opportunity cost in term of time when employees are undergoing
training. Both should be incorporated.

iii. Increase in the effort level (person month (PM))) due to security components and cost of
increased effort. This is base on the following formulae:

Volume 2, September 2010

Journal of Physical Sciences and Innovation

20

ΔE = E(with security) – E(without security)

iv. Where E is the effort level (PM) and ΔE is the additional effort required to develop a

secure product. Since COCOMO-II has been used extensively in estimating E(without
security) and users are quite familiar with such models, one can also estimate E(with
security) with some confidence. The formula for effort level E(in person month) is given
by:

E(estimated) = Lcode ScaleF x Π(MulE)

 Where Lcode is lines of code in thousands and ScaleF is a scaling factor. In particular,

ScaleF can be set as ScaleF = 1.01 + 0.01 SUM(f), where f are five scaling factors. MulE
is effort multipliers (there are 17 of them). Both f and MulE are rated on the scale from
very low, low nominal, high, very high, and extra high. The weight of each factor can be
quantified based on calibration with various projects and continues to evolve.

iv. Impact of delay in product introduction due to additional security. More effort may

cause project delay. In software, delay may or may not be costly. Thus to calculate the
cost of additional software security, the following information must be obtained:
 An estimate of the percentage change in source code size from adding security

protection. For example, it is believed the program’s size will grow 5% in number
lines of code due to increased security measures.

 The estimated complexity (from very low to very high) of the software project before
and after security is added. For example, the staff member may think the software
project’s complexity was low before adding security measures but moderate or high
afterwards.

 An estimate of the level of program documentation (from very allow to very high)
required before and after security measures are increased.

 The estimated system analyst capability (overall experience from very low to very
high) before and after security is added (i.e. an estimate of the effect that the
addition of security will have on the system analysts’ technical capabilities.

 The estimated programming team capability (overall development experience from
(very low to very high) before and after security is added (i.e. an estimate of the
effect that the addition of security measures will have on the programming teams’
technical capabilities)

 An estimate of familiarity with tools that are required to add security to the software
project. The staff member is asked how he or she feels the development teams’
experience with those tools (from very high to very low) before and after addition of
security.

 An estimate of the change in development time required (from very high to very low)
before and after security measures are added. For example, the staff member may
believe that before security was added, the project would take moderate amount
time to complete, but after security is added it will take a very high amount of
development time.

 An estimate of the overall effort (in man months) required to develop the software
before security is added. There may be records indicating that it takes on average 5
man months to complete a similar project.

Economic Models for Software Security

Akwuwuma Veronica and Egwali Annie

21

 The average cost per man month, which is the amount spent on average per 30 days
of an employee’s time.

 An estimate of reliability requirements (from very low to very high) before and after
security. Before adding security, the staff member may have believed that the
program only needed to be highly reliable, whereas to meet the claims and safety
requirements of a security system it needs to be very highly stable.

 An estimate of the cost for user training. To calculate this, the number of employees
being trained, the average time (in days) they spend in training, and the average
cost per employee per day is included.

 An estimate of any losses that will be incurred due to a delayed market entry (in any
money currency being utilized i.e. naira or dollars)

Formally, we posit four security cost equations. The effort cost (EFcost), opportunity cost
(opcost), the cost of new CASE tools or hardware/software (Cosths) and the total cost (Tcost).
The equations are as follows:

Security Cost Equation 1: Effort Cost
EFcost = Neff * costppm
 Neff = Oleff * effchg

effchg = ((1 + %CSIn)^1.15) * (comb4 / comaf) * (docb4 / docaf) * (ancb4/ ancaf) *
(pcb4 / pcaf) * (Tlb4 / Tlaf) * (Tb4) * (Rb4/ Raf)

EFcost which denotes the effort cost, Neff is the new effort, costppm the cost per person month,
Oleff is the old effort, effchg denotes effort change, %CSIn denotes percentage code size
increase, comb4 denotes complexity before, comaf denotes complexity after, docb4 denotes
documentation before, docaf denotes documentation after, ancb4 denoted analysis capability
before, ancaf denotes analyst capability after, ancb4 denotes programmer capability before, ancaf

denotes programmer capability after, Tlb4 denotes tools before, Tlaf denotes tools after, Tb4
denotes time before, Rb4 reliability before and Raf reliability after. The numerator and
denominator of each of the terms in the “effort change” calculation is derived from the user’s
answers to the corresponding values stated earlier and is assigned a numerical value.

Security Cost Equation 2: Opportunity Cost
opcost = NoTem * Avlen * (Avemcost / 365)

opcost denotes opportunity cost, NoTem denotes number of employees in training, Avlen denotes
average length of training and Avemcost denotes average employee cost.

Security Cost Equation 3: Cost of new CASE tools or hardware/software
cosths =capex.

cosths denotes cost of new hardware/ software and capex denotes capital expense to buy
additional hardware and software. So the additional capital expense can be divided into 10
projects equally, thus cost =capital expense / 10
Security Cost Equation 4: Total Cost
Tcost = EFcost +Tracost + opcost + cosths + delMCost

Volume 2, September 2010

Journal of Physical Sciences and Innovation

22

Tcost denotes total cost, Tracost denotes training cost and delMCost denotes delay to market cost.

CONCLUSION
Because the IT industry itself is changing and growing over time, certainly the security
considerations (potential holes and solutions) are changing right along with it. Security
professionals continue to battle against external attackers, cyber terrorists, automated worms
and viruses, and unfortunately, unknowing employees who mistakenly grant access to an
attacker by falling prey to a social engineering attacks. Software developers and security
professionals must therefore work as a team and make the necessary effort to stay abreast of
these changes and pay attention to the fact that security should not be scrammed on the
software at the later phases of software development life cycle, instead like other aspects of
information processing systems; the security process should be a continuous process
throughout the software development life cycle. This is crucial, for it will enable software
developers protect their customers trust and confidentiality. And by making use of the software
security costs and benefits models analyzed in this paper, the cost and benefits of adding
security to an insecure software can be evaluated and trade-offs set.

REFERENCES
Arora A., Frank S, and Telang R. (2008). Estimating Benefits from Investing in Secure Software

Development, Building Security \in, Carnegie Mellon University.

Alcorn B. (2006). Developing Secure Software, Blackboard Inc, Washington Marriott pp 1 – 23.

McGraw, G. “Software Security”. IEEE Security & Privacy, 2(2), 2004, pp.80-83.

Egwali A. O. and Akwukwuma V.N. (2008): Security Framework for Software Process Models:
Measures for Establishing a Choice. Asian journal of Information Technology, 7 (11): 463 -
471.

Kumar S. H. (2006). Seminar Report on The Study of Viruses and Worms. KReSIT.1.1.T
Bombay, pp 2 – 6.

Kabay, M. E. (2008). A Brief History of Computer Crime: An Introduction for Students.
Norwich University, pp. 4 – 56.

Davis, A. M., Bersoff E. H. and Comer, E. R. (1988): A strategy for comparing alternative
software development life cycle models. Software Engineering, IEEE Transactions on, Vol.
14, No. 10. pp. 1453-1461.

Gordon L. A. (2003). Economic Aspect of Information Security. Available online at:
http://www.umiacs.umd.edu/docs/umiacspresentation.pdf

Cavusoglu H. (2006). Economics of Security Patch Management. Available online at:
http://www.weis2006.econinfosec.org/docs/5.pdf

August and Tunca (2006). Let the Prates Patch? An Economic Analysis of Software Security
Patch Restrictions. Available online at: http://www.mansci.journal.infors.org/../170

Pietersz G. (2009). Net Present Value. Available online at:
http://www.sunbeltsoftwrae.com/spam.mht

Economic Models for Software Security

Akwuwuma Veronica and Egwali Annie

http://www.citeulike.org/user/asilva/author/Davis
http://www.citeulike.org/user/asilva/author/Bersoff
http://www.citeulike.org/user/asilva/author/Comer
http://www.umiacs.umd.edu/docs/umiacspresentation.pdf
http://www.weis2006.econinfosec.org/docs/5.pdf
http://www.mansci.journal.infors.org/170
http://www.sunbeltsoftwrae.com/spam.mht

