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ABSTRACT 
In the present paper, the boundary layer flow of viscous incompressible and electrically 
conducting fluid past a stretching plate has been considered. The boundary value problem 
governing the flow has been solved as initial value problem for velocity function using 
shooting method first, then Runge-Kutta method of order four. The values of velocity 
function so obtained have been used in the solution of heat transfer problem. The results 
have been discussed graphically. 
Keywords: Boundary layer equation, Stretching plate, heat transfer. 
 
INTRODUCTION 
The flow past a stretching plate is of great importance in many industrial applications such as 
polymer industry to draw plastic films and artificial fibers. In the process of drawing artificial 
fibers, the polymer solution emerges from an orifice with a speed which increases from 
almost zero at the orifice up to a plateau value at which it remains constant. The moving 
fiber produces a boundary layer in the medium surrounding the fiber, which is of great 
technical importance in that, it governs the rate at which the fiber is cooled and this in turn 
affects the final properties of the yarn. Crane [1] investigated boundary layer flow past a 
stretching sheet whose velocity is proportional to the distance from the slit. Carragher [2] 
reconsider the problem of Crane [1] to study heat transfer and calculated Nusselt number for 
the entire range of Prandtl number Pr. Naseem Ahmad et  al. [3 ] extended the work of 
Carragher to viscoelastic fluid (Walter liquid B) with heat transfer and discussed the related 
results. Naseem Ahmad [4] studied hydro- magnetic boundary layer flow past a stretching 
porous plate and heat transfer. The aim of the present paper is to develop a method to 
convert the boundary layer flow past a stretching plate which is defined in an infinite domain 
of definition to a finite domain. The boundary value problem defined in a finite domain has 
been converted to initial value problem by shooting method and hence solved by Runge-

Kutta method of order four for m = 1
y

 = M, where m is the stretching factor, y means y  

 and M is magnetic parameter. Later, applying the finite difference method, the problem of 
heat transfer has been solved. The results so obtained have been discussed graphically. 
 
Formation of the problem 
Two dimension flow of a viscous incompressible and electrically conducting fluid past a linear 
stretching plate under the transversely applied magnetic field has been considered. It is 
assumed that induced magnetic field is negligible in comparison to applied magnetic field.  
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For geometrical configuration,  x-axis be along the moving plate and y-axis to be normal to 
the direction of motion of the plate. If u and v are the velocity components along and normal 
directions, respectively, then under the usual boundary layer approximations, MHD steady 
flow is governed by 
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where  is the kinematic viscosity. 
The relevant boundary conditions are: 
  y = 0, u = mx, v = 0 m > 0             (2.3) 

  y  , u = 0,    
To solve this problem, we define the following dimensionless variables: 

  
y uh x h

y ,  u = , x = , v = 
h h



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where h is reference length. 
Substituting all these dimensionless variables in equations (2.1) and (2.2), we have the 
following equations in dimensionless form 
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where 
2 2

0B h
M = 




, the magnetic parameter.   

 
The boundary conditions are as follows: 

y = 0, u = mx, v = 0 m > 0             (2.6) 

y  , u = 0,   

 
where dash has been dropped for convenience. 
Setting the similarity solution of the form 

  u = mxf ()      (2.7) 
 

where  = 
y

y

, and substituting u in the equation (2.4) and using the boundary conditions 

(2.6), we have 

   v  =  – m y {f(0) – f()}     

                             = – m yf()                                        (2.8) 
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where f(0) = 0 without loss of generality. 
Using u and v in the equation (2.5), we have 

  2 1
m f ( ) f ( )f ( ) f ( ) Mf ( )

y

               (2.9) 

with boundary conditions: 

  y = 0, f = 0, f  = 1     (2.10) 

  = 1,  f   0 

Here y >> 1 so by applying magnitude analysis, 1
y

<< 1. 
 
Therefore,

 
the

 
term

 
involving

 

1

y
 

may
 
be

 
neglected

. 
Thus,

 
we

 
have

 
the

 
following

 
boundary

 
value

 
problem: 

     
                   2m f ( ) f ( )f ( ) Mf ( ) = 0       

  

                         
 = 0, f = 0, f  = 1

  1, f 0



  
    (2.11) 

 
The nonlinear differential equation in boundary value problem (2.11) has singularity at   = 

0. Therefore, it requires special attention. To overcome this difficulty, we solve the boundary 

value problem given by the equations (2.9) through (2.10) by considering m = 1
y

 = M. Now, 

the boundary value problem (2.9) through (2.10) reduces to  

  2f ( ) = f ( ) f ( )f ( ) f ( )              

   
 = 0, f = 0, f  = 1

  1, f 0



  
     (2.12) 

 
For the sake of numerical solution, we convert this nonlinear boundary value problem into its 

equivalent initial value problem by applying shooting method. The guess for f(0) by shooting 

method has been obtained by the formula 

                      i 1 i 2

i i 2 i 2

i 1 i 2

M M
M M f (1) f (M ;  1)

f (M ;  1) f (M ;  1)

 

 

 
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where Mi are approximations for M = 250)0(164)0(5 2(  ff . 

We get M = 0, that is, 
25f (0) + 164f (0) + 250 

 
= 0 which has   the roots – 1.6027 and – 

13.1973. Taking f(0) =  – 1.6027, we solve the following initial value problem equivalent to 

the boundary value problem given by (2.9) through (2.10): 

     2f ( ) = f ( ) f ( )f ( ) f ( )            

      = 0, f = 0, f  = 1,  f  =  – 1.6027      (2.13) 
 

This initial value problem is solved for f(), f () by Rubge-Kutta method of order four 

employing C+ computer programming . Trends of variation of f() and f () has been shown 

in Figure -1 and -2, respectively. 
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Heat Transfer Problem 
Under the usual boundary approximations, the heat transfer between stretching plate and 
the surrounding fluid is governed by the following equation: 
  

                      
2

2

p

T T k T
u  + v  = 

x y C y

  

   
       (3.1) 

 
with boundary conditions 
  y = 0, T = Tp 

  y  , T = T      (3.2)  
 
Defining dimensionless temperature field 

   
p

T T
 = 

T T









 

 
We have the equation (3.1) and boundary conditions (3.2) in dimensionless form as follows: 

2

2

r

1
u  + v  = 

x y p y
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y = 0,  = 1

y ,   = 0



                   
                                           (3.3) 

where Pr is Prandtl number. 
 

Using the transformation  =  
y

y

 where y means y  , we have, 

           
2

r2

d d
 + y P f ( )  = 0

dd


 



 

 = 0,  = 1       (3.4) 

               ,    0        
 
In the process of solving boundary value problem (3.4) numerically, we get the following tri - 
diagonal system of linear equations 
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 
 
 
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where i  = 1+0.05y Pr  fi  and  i  = 1 – 0.05y Pr  fi , I = 1, 2, 3, , 9. 

 
DISCUSSION AND CONCLUSIONS 
In the course of study of MHD boundary layer flow past a stretching plate with heat transfer 

for m = 1
y

 = M, we draw the following conclusions: 

1. Using the transformation 1
y

 = 


 , where y means y  , we have converted the boundary 

value problem defined in an infinite domain y = 0 to y    to the boundary value problem 

defined in a finite domain  = 0 to  = 1. By changing the problem in a finite domain, we are 
able to apply numerical approach. Therefore, employing shooting method first, then Runge-
Kutta method of order four, the problem has been solved numerically. 
 
2. According to the numerical scheme which we employed in the computation of )(f  , the 

error comes out to be 4%  which may be admissible. 
 
3. From Figures 1 and 2, we observed that velocity function f() and f () satisfy the 

boundary conditions approximately. So, our numerical approach may be quite valid for 
solving MHD boundary layer flow past a stretching plate. 
 
4. From Figure-3, we observe that for stretching factor m = 0.66, the contribution of heat to 
fluid decreases with the increase in Prandtl number Pr. Thus, Prandtl number plays a role of 
one of the controllers of heat flow from stretching plate to   surrounding  fluid at a distance y 
>> 1 

5.Figure -4 reveals that for any given Prandtl number Pr, the flow of heat from stretching 
plate to the surrounding fluid decreases as stretching factor and magnetic parameter both 
decreases. 
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Figure- 1  Trend of velocity function
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Figure-2  Trend of f'
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Figure-3 Variation of Temperature field Q for 

different values of Prandtl number Pr when y=1.5
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Figure-4 Variation of Temperature field far away 

from streching plate when Pr = 7

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1





 
 
 

Pr = 1.0 

Pr = 1.5 

Pr = 2.0 

Pr = 2.5 

Pr = 3.0 

y = 1.50 

y = 2.00 

y = 2.50 

y = 3.00 

y =3.5 



 

20 

 

Mohammed Abdullahi; Abba Vulgwe Mandara 
and Adam Mari Maina 

 

MHD Boundary Layer Flow Past a Stretching Plate and Heat 
Transfer and Its Numerical Study 
 

REFERENCES 
Crane, L.J.; Flow past a stretching plate, ZAMP, 21, 645, 1970 
 
Carragher, P.; Boundary layer flow and heat transfer for the stretching plate, Ph.D. Thesis, 

Uni. Of Dublin, 41, 1978 
 
N. Ahmad, G.S. Patel and B. Siddappa; Visco-elastic boundary layer flow past a stretching 

plate and heat transfer, Zamp, Vol.41, 294, March 1990 
 
Naseem Ahmad; Hydromagnetic boundary layer flow past a stretching porous plate and heat 

transfer, IJMS, Vol. 5, 441, Dec. 1998 
 
   


