© 2012 Cenresin Publications <u>www.cenresinpub.org</u> ISSN 2277-0135

THE QUALITY CONTROL MEASURE OF ASPHALT MIX DESIGN AS SOLUTION TO PAVEMENT FAILURE

Salihu Andaa Yunusa and Abubakar Muhammad Ahmadu Department of Civil Engineering Kaduna Polytechnic, Kaduna

ABSTRACT

This paper covered major aspect of asphalt mix design analysis, as the quality control measure of asphalt production, using British Method of Asphalt mix design procedure. It is aimed in highlighting the important of designed Asphalts as compared to ordinary mixed Asphalt in Asphalt production, for any pavement structural work. This is to analysis the merit of designed and control Asphalt product as required by BS 594, T49 and BS 4691, in Asphalt and Bitumen requirement. It equally include the whole laboratory test analysis, to determine the physical and geotechnical properties of the materials needed for the mix design, in order to attain the required data for the design procedure, in accordance to the parent material types and location and to control specific density of the designed Asphalt, that will be suitable, adoptable, durable, economical, workable and generally safe for the pavement structural design objective of the weather condition in any specified locality. This is equally aimed at controlling the rate of structure pavement failure in Nigeria as a Nation before the design age, on this note, major factors that may lead to structural pavement failure, were generally treated. The design covered both Asphaltic Binder course of 60mm thick and Asphaltic wearing course of 40mm as flexible pavement with Bitumen viscosity of 60/70. Basically the extraction of the design to determine, the Bitumen content (B.C), sieve analysis, stability, flow and void Ratio were equally include in accordance with British stand as the control measure. All individual result of the design mix were adequately presented. These have shown that generally Asphalt mix design is necessary, as measure of quality control of Asphalt both on Binder course and wearing course. Also it is very important to note, that in any pavement structure as part of Civil Engineering Project on road Transportation, either surface dressing and any other classis of flexible pavement, for Government and Individual, Design and Control should be applicable to maintain standard and control pavement failure.

INTRODUCTION

Generally, the design requirement of any structural Asphalt, flexible pavement project to be achieved. Close supervision and adequate mix design and control should be done by the civil Engineer involved. In recent year, we have witness allot of flexible pavement failure as part of structural failure on road either during construction, after the construction or few years of the project completion, without satisfying pavement design age of the project, life span. Although the likely cause pavement failure were very enormous, failure of pavement from sub-base layer to base course and from base course to binder course, before it get to the wearing course of the flexible pavement structure, might be as a result of the following

Construction Factor are as follow

1. Poor or none Application of Asphalt mix design

Corresponding Author: Salihu Andaa Yunusa

The Quality Control Measure of Asphalt Mix Design as Solution to Salil Pavement Failure

Salihu Andaa Yunusa and Abubakar Muhammad Ahmadu

- 2. Poor Asphalt production
- 3. In adequate field compaction on structural pavement layer and Asphalt laying
- 4. Placing material and laying of Asphalt during raining period.
- 5. Production of Burn Asphalt, due high temperature of the bitumen and dryer.
- 6. Lack of production plant calibration professional personnel
- 7. Use of in compactable material for structural pavement layer and asphalt production
- 8. Lack of efficient supervisor
- 9. In adequate preparation of laying platform
- 10. Inadequate application of codes of practices
- 11. General corruption of client representative, consultant and contractors
- 12. Lack of required equipment for construction
- 13. Absence of Quality control personnel
- 14. Absence of professional Civil Engineer
- 15. Absence of Drainage channel to evaluate pounded water

Local Factor are as follows

- 1. Constant oil for instance petrol, engine oil, kerosene and diesel spillage on pavement due to accidental cases, tank leakage, break down of vehicle on pavement with engine oil spillage can cause pavement failure
- 2. Burning on the pavement during political uproar (the heat emitted by burning, affect the Asphalt layers
- 3. Placing of service duck without efficient treatment of the locations (this will affect the sub-base, base course , binder and wearing course layer
- 4. Dumping of refuse on pavement (this will decay and degenerate to gases that affect and dissolve the Asphalt component to separation)
- 5. Deposition of refuse on drainage channel to block the channel from continuous flow, therefore affecting some section of the pavement due water stagnation or pounding within alignment
- 6. Lack of maintenance of road by constant removal of weed on shoulder and evacuation of Drainage channel that may negatively affect the section of the pavement by flooding.

Naturally its is physical that even after critical design and supervision, there are still more to control, during the serviceability of the flexible pavement as explained above

CONSIDERATION OF DESIGN

Considering Road project, that include the use of flexible pavement, as the structural layer of carriage way, it involve the use Asphalt and required that all the material needed for the Asphalt, be tested to determine the physical and Geotechnical properties of such materials.

These are, Bitumen (60/70), fine Aggregate (sand or quarry dust) coarse Aggregate, diesel, S125 (tack coat) and Mc 1 The value of the physical properties obtained will be used for the basis of all the design consideration for the asphalt mix design. These will on the long run assist in preventing failure in the design of pavement structure and the design of Asphalt Mix needed for the road. If this project is well supervised and maintained, the design age of the

project will be adequately achieved. Therefore it is necessary that in every individual road project, there should be a qualified quality Civil Engineering for the design, control and maintenance of the project

CONDITION OF DESIGN

It should be understood that Asphalt mix design and Asphalt production. Must achieve the specified requirement, and also that the physical properties of materials obtainable might very from one location to another. It is a common practice to produce a trial Asphalt mix design at a location of any state, take for instance Kaduna State with Kaduna soil, rock aggregate and quarry dust of specific company in Kaduna. Although, Bitumen depend on the Brand, either 40/50, 60/70, 20/100 at 25 degree centigrade in accordance with any selected viscosity and use the Asphalt in another state, if the January distance in kilometer is with the specifying requirement, with out resulting to cooled asphalt to be laid on site it generally accepted.

The most important factor on the condition of Asphalt design and production were as follow

- 1. The soil and aggregate material used for the design most conform with the required limitation.
- 2. The Brand of Bitumen used on the design must be maintained and should conformed with the required specification
- 3. The batching plant should be calibrated and control before production
- 4. The production temperature should be within the required limitation, should be maintained and controlled
- 5. The procedure for transportation of Asphalt should strictly followed In accordance general specification
- 6. The required bitumen content for a specific asphalt production should be within range of specification
- 7. The design and production asphalt for extracted, sieve analysis of the Aggregate should be within the specify range and envelop respectively
- 8. The produce bitumen content as binder content, should be equal to the design binder content and should be within the limit of specification
- 9. Job mix formula, which highlighted the Bulk density, voids in total mix, flow, stability, and voids fill with Bitumen, should form the bases of control and should be within the specified requirement
- 10. The Asphalt laying temperature should be continuous monitored, to control the bleeding, creeping and washing out of Bitumen, from the laid Asphalt.
- 11. At every five hundred meter of laid Asphalt, there should be control sample for analysis as itemized above from (1-9) and if any alteration, deviation of the control test result were found not within the required specified limitation, such production should be rejected, until it is Generally corrected and controlled to normal, before it will be accepted on site for laying

Quality control of Asphalt mix design (as applicable to binder and wearing course). It should be cleared that all the Asphalt mix designed quality control are considered as Trial Mix The Quality Control Measure of Asphalt Mix Design as Solution to Salihu Andaa Yunusa and Abubakar Pavement Failure Muhammad Ahmadu

design, until it is checked and approved by consultant in conjunction with the client, Representative approval, before Asphalt production to site, can take effect. All the materials for Asphalt production have there specific code of practice to access the physical and geotechnical properties of the materials. These are the codes of practice

- (1) Aggregate test and BS 812 and 882
- (2) Bitumen test BS 4691 AASHHTO T 49
- (3) Asphalt test BS 594

The codes of practice serve as bases for checks and balances of the material physical and geotechnical performance. In order word, Quality Control personnel duty is to make sure that the Asphaltic design parameter achieved are within the required limitation in order to achieve the serviceability requirement of the road.

Major factors affecting Asphalt mix design as a measure of the quality control procedure. According with BS 594 and BS 469, the design of Asphalt should be on the following bases, in every region of the world.

- 1. Types of pavement
- 2. Types of Asphalt
- 3. Choice of Aggregate size
- 4. Choice of Bitumen (Viscosity) /Grade
- 5. Range of Binder content, percentage of asphalt
- 6. Thickness of Asphalt mm
- i. Flow range in mm
- ii. Percentage void in mix
- iii. Limit of Asphalt Bulk density g/ m³
- iv. Stability condition of asphalt in KN

TYPES OF PAVEMENT

This could be concrete pavement constructed mainly with concrete material of a high grade, for instance concrete grade 40N//mm² or flexible pavement, which is dense Bitumen macadam with specific percentage aggregate requirement design for Asphaltic Binder and wearing courses of their specified thickness. Rather it could be composite pavement of specific requirement of concrete and Asphalt layers to obtain a durable composite pavements

Types of Asphalt: These are classified under dense Macadam Asphalt Base. It could be Binder and wearing course Asphalt of an individual thickness, which varies with client demand in accordance with the requirements of the BRITISH STANDERD[BS],AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS [AASHTO] and AMERICAN SOCIETY FOR TESTING AND MATERIAL [ASTM]. These are clearly followed in accordance with the individual code of choice to achieve the require objectives of durability, safety, serviceability and economy.

The Choice of Aggregate size depend on the availability of aggregate in that locality which must be tested to determine the suitability of it for the Asphaltic mix design analysis. The

choice of aggregate, equally depend on the type of asphalt to be design, for instance either Binder course and wearing course have different types of aggregate selection as may be present in mix design example in Appendix A:

Choice of Bitumen Viscosity grade; This could be 40/50, 60/70 and 20/100 viscosity grade of bitumen brand. Selecting of any grade of Bitumen depends on the individual and client choice.

Range of Bitumen quantity or Binder Content; Depends on the Nature of Asphalt, because wearing course Asphalt needed more Binder content than Binder course Asphalt. This is due to the fine Nature of Aggregate mostly consumed on wearing course Asphalt than the binder course Asphalt. The more the fine Aggregate component on Asphalt mix design, the greater the consumption of Bitumen within the require limit of the Binder content percentage specification. Because excess consumption of bitumen causes the following:

(a)Bleeding (b) cracking (c) Shifting (d) Bumping or local action

- [a] **Bleeding**; is the seeping of excess Bitumen from the laid asphalt due to increase in temperature during compaction process and during high sunshine of the day.
- (b) **Cracking**: this occur during compaction period of Asphalt laying some lines of pressing and separation within the line of compaction will be formed and may tense to separate after the compaction have taking effect, creating a joint that can lead to Asphalt failure. These some times can be manually removed by other natural activities on the Asphalt layer since efficient compaction is not achieved due excess Bitumen.
- (c) **Shifting;** this is the moving of laid Asphalt from it original position inward or outward during compaction procedure. This may lead to excess spreading of laid asphalt without achieving the required thickness as laid for a specific type of layer as required in the specification.
- (d) Bumping or local action:- This very visible at the completion of individual layer of laid Asphalt compaction, the nature super elevation compaction will not be achieved, at certain location, there will be sagging or hogging, above or below the compaction elevation respectively. These are referred to as local action or Bumping.
- (e) **Thickness of Asphalt**:- This is factor that concern the client, based on the design achieved. The thickness of Asphalt as a flexible pavement Range from 100mm to 120mm, and comprise of 60mm Binder course and 40mm wearing course or both Binder and wearing courses 60mm as the case may, all depend the Dense macadam design specification which have taken care of durability safety economy and serviceability of the road project concerned.
- (f) **Secondary Factor of Asphalt mix design**; To determine the secondary factor of Asphalt mix design, it include the following factures
- (i) Flow Rang in mm (ii) Percentage void in mix (iii) Limit of Asphalt Bulk density in g/m³ (iv) stability condition of the produced Asphalt in KN

The Quality Control Measure of Asphalt Mix Design as Solution to Salihu Andaa Yunusa and Abubakar Pavement Failure Muhammad Ahmadu

All this mentions on the secondary factors must be achieved on the trial mix design within the specified limit, before the Asphalt designed mix can be considered durable, workable, safe and serviceable for use, before the approval of the asphalt trial mix design, as mix design to be use for specific road.

Texture of Asphalt: This depend on the percentage quantities of fine aggregate ratio that falls within the required design envelope, for either Binder course and wearing course Asphalt. The most important factor of Asphaltic texture on mix design is envelop no matter the ratio of Aggregate inclusive, if it is not within envelop, it is considered inadequate.

Method of Asphalt Mix Design

- 1. British Standard Method (BS)
- 2. America Association of State Highway and Transportation Officials (AASHTO)
- 3. American Society for testing and material (ASTM)

The above mentioned method of Asphalt mix design procedure were all same, but difference in the textural classification as required to extraction and sieve analysis, sieve arrangement differs and envelop classification differ from one another within the three method applicable for this report British standard (BS) is most applicable.

British standard Method of Asphalt Mix design, include the following steps

- 1. Obtain all the individual material example fine Aggregate, coarse Aggregate, and the specific viscosity brand of Bitumen 60/70
- 2. Subject the individual material to physical and geo-technical analysis as presented in appendix B, if the test result of whole materials ware within the limit of specification they will be kept at their specific location for instance Aggregate will be kept on the Bin and Bitumen will be kept on tanks

If for instance the Asphalt trial mix design is Binder Course the, it comprises of four Bins various range of aggregate compartment as follow:

Types of Bin	Range of Aggregate size	Percentage quantities to be supplied per mix
Bin 1	0-5mm	42%
Bin 2	5 – 12 mm	18%
Bin 3	12-19mm	24%
Bin 4	19- 25mm	16%

On the percentage quantity to be supplied per each volume of Asphalt mix can be varied at any time, if the there is change in aggregate or change in Asphalt design mix analysis for Binder Course Asphalt.

If for instance, the Asphalt trial mix design is wearing course. IT comprises of three Bin for various range of aggregate compartment as follows below

Types of Bin	Range of Aggregate Size	Percentage Quantities to be supplied per mix Bin
Bin 1	0-5mm	60%
Bin 2	5-12mm	21%
Bin 3	12-19mm	141%

For the percentage quantities of Aggregate to be supplied into the machine per 1 cubic meter of mix can varies in accordance to change in aggregate production or design analysis. The material tested and positioned will be resample, subjected to Asphalt trial mix design for either Binder and wearing course. Exert Job formula of mixing the asphalt in accordance to BS 594 will be adhered to All the method of compacting and extracting mix asphalt will applicable and the properties of the compacted Asphaltic concrete will be determined, to check and exercise the conformity to BS 594, it is expected to excise more Asphalt mix designed with different percentage of Bitumen and selected the best that is within the required Range of specification on properties of mix and compacted Asphaltic concrete as presented in appendix (A).

The importance of Quality Control

In all aspect of Asphaltic mix design procedure ware clearly excised, for good quality and achieve the design objective. On this not an experience Quality Control Engineer is needed at all cost, to run the aggregate test, trial Asphalt mix design, marshal test, extraction test analysis and subsequent control test analysis on site, if trial mix designs are considered appropriate, they will be approved for use on site. If all these procedure discussed above about Asphalt mix design and production of Asphalt are well followed failure of flexible pavement will be 80% control.

Responsibilities for quality Construction must include the following;

The client must appoint an experience consultant for design and control, and contractor must work as a team with the consultant proposer from the client and agree with any subsequent unforeseen circumstance on site with the client consultant and contractor to achieve the desired quality in flexible pavement and other construction project. Fig 2.3 highlight the major task for the three parties in the relationship needed for the successful completion of a road project with the desired quality level.

The Quality Control Measure of Asphalt Mix Design as Solution to Pavement Failure Salihu Andaa Yunusa and Abubakar Muhammad Ahmadu

Fig 2.3 Responsibilities of the client, consultant and contractor

A sample of Asphalt mix design

A new road under construction to link Sabo road after Bridge from Eastern by-pass road as spore through U/Gibi, have reached stone base level, ready for the Asphaltic formation as the structural layer of the road, using the British method of Asphalt mix design as flexible pavement, provide trial mix design of Asphaltic Binder and wearing course, using Eksogullari Quarry aggregate and sand from chikaji river Kaduna . The recommended Bitumen viscosity Brand should be 60/70. The Binder content should be within the specified requirement for Asphalt Binder and wearing course, as represented in appendix B. For the solution of these problems, the procedure are as presented in the format below in format, 1,2,3,4,5 and 6, 7, 8, 9, 10 for Asphaltic Binder and wearing course respectively as required by the specification and as presented in Appendix A. The individual specified limitation used during the design procedure were provided in appendix B Most of the Quality control test analysis for the materials used in the Asphalt trial mix design are, provided in appendix C.

MAJOR WAYS OF CONTROLLING FLEXIBLE PAVEMENT FAILURE

- 1. Quality control Engineers and personnel should be duly involve in the design and control of Asphalt pavement work
- 2. During design, construction, production and laying of Asphalt, the three parties that form construction team, Client, Consultant and Contractor should adequately function and dedicated to their duties.
- 3. There should be law enacted guiding road users, transporter, oil manufacturing company and individual on road management. And violator should be punishable by law
- 4. There should be an agency that control and maintain road usage in all the three level of the country, like local level, state level and federal level

- 5. There should public awareness on radio, television and all other media on road and drainage maintenance
- 6. There should be security control during on carriage way to control the pavement burning, during riot, rampage or any political problems in the states and country at large.
- 7. In case of additional services on the carriage way or passing through the alignment, it should be directly handle by road maintenance agency.

ANALYSIS OF ASPHALT MIX DESIGN AND GRAPHS

Wearing course asphalt: The sieve analysis of the design and that of the control sample extraction were within the specified envelop. The bitumen content of the mix design and the control sample were within range of specification. Generally maximum stability, maximum density void in mix and flow rate were within the required specification for wearing asphaltic base cement.

Binder course asphalt: The sieve analysis of the design and that of the control sample extraction were within the specified envelop. The bitumen content of the mix design and the control sample were within range of specification. Generally maximum stability, maximum density void in mix and flow rate were within the required specification for binder course asphaltic base cement.

CONCLUSION

Base on the illustrations on Quality Control of Asphalt mix design, as a measure for controlling flexible pavement failure. It is clear that if all the processes discussed above are duly employed and adhered to always, the design objective and design age of flexible pavement will be achieved, for safety and durability of the road in this country.

RECOMMENDATION

In all projects that involve construction of flexible pavement, procedures above should be strictly followed at all levels of road construction in this country, without undermining the cost involved for safety, durability and serviceability of the users and the project.

- Project should not be awarded to non professionals in order to control or reduce project failure.
- There should be public awareness about the important of quality control in all sectors of production and construction industries and to the individuals in order to control or reduce failure.
- > In every beginning of any asphalt production there should efficient calibration of the batching or mixing plant for adequate mix proportion.
- The control mix, laying and rolling temperature, should be adequately monitored, to avoid burned asphalt production.

The Quality Control Measure of Asphalt Mix Design as Solution to Salihu Andaa Yunusa and Abubakar Pavement Failure Muhammad Ahmadu

Asphalt laying should be stopped during raining period, in order to avoid cold asphalt laying and segregated asphalt base.

REFERENCES

- Surendra Singh (1979) Engineering Materials Second edition Published by Vikas Publishing house PVT Ltd New Delhi.
- Frank Havvias (1989), Modern Construction, and equipment Methods second edition, published by Longman Singapore.
- C. A. Oflaerty (1976) Highway Engineering Volume 2, second edition, published by Institute for Transport Studies and Department of Civil Engineering University of Leads
- N. Jackson (1981) Civil Engineering Materials, second edition, published by Macmillan Press Ltd London.

American Association of State Highway and Transportation Officials (AASHTO) 1990 By Highway Subcommittee on Materials.

American society for testing and materials, [ASTM], designation D244-99, 100 Barr Harbor, published by DR West Conshohocken.

Federal Ministry of Work and Housing, (1997), General Specification, Road and Bridges Vol.2. Nigeria.

APPENDIX A

Ref: 0041/34 Date;08/11/2010

Construction of Kaduna Eastern By-pass Contract No: 5346 Kaduna /Nigeria

The Engineer's Representative Federal Ministry of Works Kaduna Journal of Science and Multidisciplinary Research

ASPHALT WEARING COURSE MIX DESIGN

We hereby present to you the Asphalt Wearing Course Mix Design/Mix Formula, using aggregate from our new crushing machine.

Bulk Dens	sity	=	2.33g	/cm ³
Maximum	Stability	=	9.4KN	l
Voids in M	1ix (VIM)		=	4.0%
Flow			=	3.0mm
Optimum	Bitumen Content		=	5.87%
Filter			=	5%
Bin 1	0-5mm aggregate		=	60%
Bin 2	5-12mm aggregate	=	21%	
Bin 3	12-19mm aggregate		=	14%

STATEMENT OF MIX DESIGN

Mix Design at 5.0% Bitumen Mix Design at 5.5% Bitumen Mix Design at 6.0% Bitumen Mix Design at 6.5% Bitumen Mix Design at 7.0% Bitumen

Engr. Salihu A. Yunusa [NMSE] *Quality Control Chief Engineer*

APPENDIX A

Construction of Kaduna Eastern By-pass Road (with spur to Rabah Road)

Contract NO. 5346

Technica	al:_						Projec	t			Lo	cation						
Date:											Type of	Aspha	alt; W	/EARIN	IG COURS	E		
SIEVE	G	RAD	ING		OF		THE	СОМРО	DSITIO	N OF 1	THE COI	ΜΡΟΝΙ	ENTS	5 % BY	WEIGHT	GRADING	G OF THE	SPECIFICATI
	C	OMP	ONE	NTS 9	% B\	WE	IGHT	OF THI	Ε ΤΟΤΑ	L AGGF	REGATE					TOTAL A	GGREGATE	ON
	R	EI														% BY WE	IGHI	
Size								1/2	$^{3}/_{8}$	⁰ / ₅	fill					Retaine	Passing	
Mm								14	21	60	5					d		
1	2	3	4	5	6	7	8	3	9	9	1	0	11		12	13	14	15
37.5mm		[·=·=·		[. .					1	[_ . _ . _ . _]						
25.4mm																		
20.0mm								14.0	21.0	60.0	5.0			100			100	100
12.5mm								2.0	20.6	60.0	5.0			87.6			87.6	85-100
10.0mm								0.1	16.5	60.0	5.0			81.6			81.6	75-92
5.0mm									1.8	59.8	3.0			66.6			66.6	65-82
2.36mm									0.1	49.2	5.0			54.3			54.3	50-65
1.18mm										38.5	5.0			43.5			43.5	36-51
600µm										32.0	5.0			37.0			37.0	26-40
300 µm										20.8	5.0			25.8			25.8	18-30
150 µm										10.9	4.8			15.7			15.7	13-24
75 µm										6.3	3.0			9.3			9.3	7-14

APPENDIX A Construction of Kaduna Eastern By-pass Road (with spur to Rabah Road) Contract No. 5346 CONTROL SAMPLE COMBINE AGGREGATE

Material Testing Laboratory MARSHALL TEST DATA												Operat	or								
					Wea	rin	g Cou	rse				Date:				F	lef:				
					Con	trac	t					Locatio	on								
Mix ref.	Temp eratu re	Bit con t. %	Bit Conte nt Cx 100 100+C	Weig ht in Air	Wei ght in Air afte 1hr	r	Wei ght in wate r	Volu me f -g	Bulk Densit y e/h		$\frac{S}{\frac{GM}{B-700}}{\frac{B-700}{SGM}}$	Vol. o Bit d 1 S Bit	of X g	Vol of Aggre. $\frac{100}{SG} - \frac{dx}{Agg}$	Void in mix Aggt. 100 – L	Void in Mix Vim 100x K+L	$ \frac{\%}{\text{void}} $ filled $ 100 x \frac{L}{R} $	Sta bilit y Kg	Cor r Fac tor	Cor r Sta bilit y Kg	Flow0. 1mm s
а	D	C	D	e	SOCH			n	I	J		k		L			U	n	a		
					f		a					ĸ			m	n		Р	Ч	r	
1			%		-		5			G	im/ml	%		%	%	%	%			-	
2	°C	P.H.	Wt								,	-		-	-	-					
3		А																			
Averag	Average			•																	
	EXTRA																				
a.	Vassal +	- Aspha	lt				120										Sieve Ar	nalysis			
b.	Vessel E	impty					120										25.4	-			100
с.	Asphalt	a –b		394			100							\square			19.0	-		100	100
d.	Vessel +	- Aggre	gate				20 20										12.7	81	13,5	86.5	85-100
e.	Aggrega	ite d-b		361		•											9.5	32	5.3	81.2	75-92
f.	Filter +	filler		358													6.35	79	13.2	68.0	65-82
g.	Filter En	npty		349		2	% 40										2.36	90	15.0	53.0	50-65
h.	Filler f-g			9			20										1.18	60	10.0	43.0	36-51
i.	Total Ag	gregate	e e+h	370			20										0.60	34	5.7	37.3	26-40
j.	Binder C	Content	c-I	24			0										0.300	70	11.7	25.6	18-30
k.	Binder	Conte	ent %	6.0			(0.01	0.1	1		1		10		100	1.150	60	10.0	15.6	13-24
	I+ex100)									sieve s	ize in mn	n								
١.	Unsolve	Bitume	en														0.075	37	6.2	9.4	7-14
m.	Total K+	-L%																			

The Quality Control Measure of Asphalt Mix Design as Solution to

Salihu Andaa Yunusa and Abubakar

Materi	al Test	ing Labor	atory		MARS	SHALL 1	FEST D	ATA		Operato	r							
		-	-		Wear	ing Cou	ırse			Date:			Re	f:				
	Sam	ple Height			Contr	act				Locatior	۱							
Mix ref.	Ten pera ture	C C3 C1	Bit Co nte nt <u>Cx 100</u> 100+C	W ei gh t in Air	Wei ght in Air afte r	Wei ght in wat er	Volu me f —g	Bulk Densi ty e/h	$\frac{S}{SGM} + \frac{B - 700}{SGM}$	Vol. of Bit d x 1 Sg Bit	Vol of Aggre. $\frac{100}{SG} - \frac{d}{Ag}$	Void in mix Aggt. 100 – I	Void in Mix Vim 100x K+L	% void fille d 100 x	Stab ility Kg	Cor r Fac tor	Corr Stab ility Kg	Flo w0. 1m m
а	b		d	e	i 1hr sock f	g	h	I	J	k	L	m	n	0	р	q	r	S
1			%						Gm/ml	%	%	%	%	%				
2	°C	P.H.A	H.A Wt															
3																		
Average	e							1										
	EXTR	ACTION				12	0											
а.	Vassal	+ Asphalt				ഫ 10	0							SIEVE	<u>ANA</u>	LYSIS		
b.	Vessel	Empty				sin	0							25.4	-	-	100	
С.	Aspha	t a –b	39	94		bas								19.0	-	-	100	100
d.	Vessel	+ Aggrega	ite			eight 9	0							12.7	21	5.7	94. 3	85-100
e.	Aggree	gate d-b	30	61		× 2	.0							9.5	49	13. 2	81. 1	75-92
f.	Filter + filler 358 0 0.1 1						1	10		100		6.35	41	11. 1	70. 0	65-82		
g.	Filter Empty 349 sie							sieve siz	e in mm				2.36	62	16. 8	53. 2	50-65	
h.	Filler f	-g	9					% passing	lower l	imit —	upper limit		_	1.18	42	11. 4	41. 8	36-51
i.	Total Aggregate 370 e+h													0.60	30	8.1	33. 7	26-40

			-			Muhamma	d Ahmad						
j.	Binder Content C-i	24				riunanina	u Amnau	μ	0.30	44	11.	21.	18-30
									0		9	8	
k.	Binder Content % i	6.1							1.15	30	8.1	13.	13-24
	+ex100								0			7	
١.	Unsolve Bitumen								0.07	16	4.3	9.4	7-14
									5				
m.	Total K+L%												

Salihu Andaa Yunusa and Abubakar

Journal of Science and Multidisciplinary Research

Volume 4, December 2012

Construction of Katura Eastern By-paes Road (with Bourts Robett Road) Contract No. 5548

100		1	10.	10	2	3	0
. EH	510	х	ЭU	u	Ħ۴	11-	-

		% of Bitano		_	Sanpie	Helde		WR in	Weight	Wit after	Visi. of	Comparted	Theoritical	Voit in	ABV	Viet					
No	84,95	W5.55	- grame	1	3	3	Average	Atr(g)	IN HO ₂ (g)	1 N	Rper.	Denity	Density	Mar%	- 5	filed with	Paw	Endoldy	Contractive	Corrected	FORMULAR
_		-		ala.	mn	am	mit	A	C	Scaled (B)	Y=B-C	Do'l	De	V _a		SR % Vr	HER.	KN	Rido	Statisty	
							0.00	ASPHA	LT WEAR	EING COU	Rac mi	A DESIGN	-	_	-			1	1 00.5	1	
1	5		57,4	62.5	82.4	82.3	62.4	1194	667	1194	527	2.27		6 1			2.4	10.6	0.76	8.1	
2	5		57.4	62.4	62.2	62,3	62.3	1195	669	1195	526	2.27					2	10.4	0.78	7.9	
3	5		57.4	62.1	62.4	82,5	62.3	1195	669	1195	526	2.27					2.6	10.9	0.76	8.3	V = B - C
VERAGE	L								_			2.27	2.44	6.97	17.60	60.6	2.3			.8.1	-
4	5.5		57.8	62.2	62.3	62.4	62.3	1203	680	1203	523	2.3					2.8	9.8	0.76	7.4	Dp = A
5	5,5	-	57.0	62	62.4	62.2	82.2	1202	682	1202	520	2.31		6			3	12	0.75	9.1	v
6	5.5		57,8	62.2	62.1	62.1	62.1	1199	680	1199	519	2.31					- 3	11.5	0.76	8.7	
VERAGE									-			2.31	2.42	4.65	16,68	72.7	2.9	-	-	8.4	Dy 100 + W.
7	6	-	58	60.9	61	61	61	1192	678	1192	514	2.32					3.1	12.3	0.76	9.3	100 + Wa
8	6		58	60.9	60.9	61.2	61	1197	683	1197	514	2.33					3.5	12.6	0.76	9.6	6, C,
9	6		58	61	61.2	51	81.1	1199	684	1199	515	2.33					3.4	12	0.75	9.1	
VERAG												2,33	2.41	3.32	1640	79.6	3,3			9.5	$V_{11} = D_7 - D_7 - X.100$
10	6.5		60	62	81.9	62.1	62	1200	678	1200	622	23			0		5	14.2	0.78	10.8	Dr
11	6.5		60	62	62	62.1	62	1198	679	1198	619	2,31					4.4	13	0.76	8.9	Q _{ab} = 105
12	6.5		50	82	61.9	62	62	1199	685	1199	619	2.35					3.3	13.6	0.76	10.3	<u>K% + 1% +</u>
VERAG	E		2	_		v		WILL PROV				2.31	2.39	3.35	17.56	9.08	4.2			10.3	6, G
13	7		66	62.4	62.4	62.5	62.4	1195	665	1195	529	2.26					5.7	10	0.76	7.6	
14	7		55	62.5	62.5	62.4	62.5	1194	667	1194	821	2.27]		1		4.1	10.2	0.76	7.8	VMA = 100 - Dp (100 - V
15	7		05	62.5	62.5	62.5	62.5	1198	666	1195	529	2.26					5.8	10,3	0.76	7.8	0 _m
AVERAG	E					10		100	1.016	100- 		2.26	2.38	5.04	19.78	74.5	5.2			7.7	V. VMA - VA X 100
		1									1										VNA
-													1								Pia= 100 (Gar-Gal)
													1								(Geff - G _{sb})
_	-					-							1								
Bit Densi	ty = 80/70	2							coarse ap	a =35%					Coarse A	og. Vol. den	sity # 2.53	5			
Bit. Penel	ration = 60	0/70							Fine Ago	=60%					Fine		= 2.741				
Ago Bit									Filer=6%												
Annranat	a mir un De	ensity =	2.62						Ago, Mix	density =	2,589										

The Quality Control Measure of Asphalt Mix Design as Solution to Pavement Failure

Salihu Andaa Yunusa and Abubakar Muhammad Ahmadu

APPENDIX A TEMPERATURE CONTROL

S/No	Truck	Arrival	Department	Arrival	Laying	Rolling	Change	Cha
	Identification	Time	Time	Temperature	Temperature	Temperature	Before	Afte
1	XB627SNK	6:00pm	6:25pm	165° ^C	130°	100°	0+990	0+9
2	XB271SNK	6:20pm	6;35pm	165° ^C	130°	100°	0+957	0+9
3	XA637KRU	6:35pm	6:48pm	165° ^C	130°	100°	0+997	1+0
4	XA637KRU	6:45pm	6:55pm	165° ^C	130°	100°	1+027	1+0
5	XB267SNK	6:56pm	7:15pm	165° ^C	130°	100°	1+057	1+0
6	XB627SNK	7:10pm	7:35pm	165° ^C	130°	100°	1+067	1+0

PROPERTIES OF BITUMEN

Bitumen penetration 64mm @ 25oc for 60/70 bitumen viscosity Specific gravity =1.02 @ $25^{\circ c}$ Softening point = 55.65°^c @ 5.2minuts Ductility = 120cm Flash point = 93°^c @ 320 seconds

APPENDIX A

Ref:0041 /28 Date:08/12/2010

ASPHALT BINDER COURSE MIX DESIGN

We hereby present to you the Asphalt Binder Course Mix Design/Mix Formula, using aggregate from our new crushing machine.

Bulk Density Maximum Sta	ability	= =	2.32g/ 10.2Kl	′cm³ N
Voids in Mix ((VIM)		=	5.2%
Flow			=	4.2mm
Optimum Bitu	umen Content		=	4.8%
Bin 1	0-5mm aggregate		=	42%
Bin 2	5-12mm aggregate	=	18%	
Bin 3	12-19mm aggregate		=	24%
BIN 4	19-25 mm aggregate		=	16%

STATEMENT OF MIX DESIGN

Mix Design at 4.0% Bitumen Mix Design at 4.5% Bitumen Mix Design at 5.0% Bitumen Mix Design at 5.5% Bitumen Mix Design at 6.0% Bitumen

Engr. Salihu A. Yunusa [MNSE] *Quality Control Chief Engineer* The Quality Control Measure of Asphalt Mix Design as Solution to

Salihu Andaa Yunusa and Abubakar Muhammad Ahmadu

APPENDIX A

Construction of Kaduna Eastern By-pass Road (with spur to Rabah Road)

Contract NO. 5346

Technic	al:					Pro	oject				Lo	ocati	ion					
Date:										Ту	pe of	f Asp	phalt	BIND	ER C	OURSE		
SIEVE	GRA CON WE	ADIN 4POI (GHT	G NENTS RET	OF 5	%	THE BY	COMP WEIG	OSITI HT OF	ON O THE T	F THE OTAL A	CO GGR	MPO EGA ⁻	NENTS TE	5 %	BY	GRADIN TOTAL AGGREG BY WEIG	G OF THE ATE %	SPECIFICATI ON
Size	25	20	12	Du			16%	24	18	42%						Retaine	Passing	
1	2 3	<u> </u>	5	6	7	ـــــــــــــــــــــــــــــــــــــ	3		9	1	0	1	1	L	12	13	14	15
	T		[[m			[1						
37.5m m																		
25.4m m	10 0						16	24	18	42							100	100
20.0m m	32. 2	10 0					5.2	24	18	42							89.2	70-90
12.5m m	0.1	17 .9	100				-	4.3	18	42							64.2	55-80
10.0m m		0. 8	81. 5				-	0.2	14.7	42							56.9	47-70
5.0mm		0. 4	3.2	100				0.1	0.6	42							42.7	40-60
2.36m m			0.4	84. 2					0.1	35.4							35.5	27-45
1.18m m				63. 3						26.5							26.7	20-34
600µm			1	46.						19.7					1		19.7	14-27

		9									
300		32.				13.5				13.5	8-20
μm		2									
150		16.				8.0				8.0	5-15
μm		6									
75 µm		9.7				4.1				4.1	2-7
-											

APPENDIX A

Construction of Kaduna Eastern By-pass Road (with spur to Rabah Road) Contract No. 5346 COMBINE AGGREGATE

Material Testing Laboratory MARSHALL TEST DATA						Operator												
					Binder Course				Date: Ref:									
Sample Height					Contract				Location									
Mix	Te 🗖		Bit	W	Wei	Wei	Vol	Bulk	S	Vol. of	Vol of	Void	Void	%	Sta	Cor	Cor	Flo
ref.	mp		Со	ei	ght	ght	um	Densi	SGM	Bit d x	Aggre	in	in	voi	bilit	r	r	w0.
	era	C C ₃ C ₁	nte	gh	in	in	e f	ty	$\left + \frac{B-700}{2} \right $	1 Sg	-	mix	Mix	d	У	Fac	Sta	1m
	ure		nt	t	Air	wat	-g	e/h	' SGM	Bit	100 d	Aggt	Vim	fille	Kg	tor	bilit	m
			<i>Cx</i> 100	in	afte	er					SG A	-	100x	d			У	
			100+0	Ai	r							100	K+L	100 1			Kg	
Α				r	1hr							— L		100 %	4			
	b		А		SOC		н	Ι	J	k	L				р	q		S
			u		k	g							n	0			r	
												m						
				е	f													

The Quality Control Measure of Asphalt Mix Design as Solution to Salihu And

Salihu Andaa Yunusa and Abubakar

The Quality Control Measure of Asphalt Mix Design as Solution to Pavement Failure Salihu Andaa Yunusa and Abubakar Muhammad Ahmadu

APPENDIX A

Construction of Kaduna Eastern By-pass Road (with spur to Rabah Road)

Contract No. 5346

CONTROL SAMPLE

Material Testing Laboratory MAI						MARSHALL TEST DATA				Operator								
					Binde	er Cou	rse			Date:			Re	f:				
	San	nple Heig	ht		Cont	ract				Location								
Mix ref. A	Te mp erat ure b	C C3 AV	Bit Co nte nt <u>Cx 100</u> 100+0	W ei gh t Ai r	Wei ght in Air afte r 1hr soc k f	Wei ght in wat er g	Vol um e f -g h	Bulk Densi ty e/h I	$\frac{S}{SGM} + \frac{B - 700}{SGM}$	Vol. of Bit d x 1 Sg Bit k	Vol of Aggre $\frac{100}{SG} - \frac{d}{A_s}$ L	Void in mix Aggt 100 – L m	Void in Mix Vim 100x K+L n	% voi d fille d 100 x	Sta bilit Y Kg P	Cor r Fac tor	Cor r Sta bilit y Kg r	Flo w0. 1m t m
1			%		•				Gm/ml	%	%	%	%	%				
2	°C	P.H.A	Wt															
3																		
Averag	e												l					
	EXTR	ACTION				1	20											
a.	Vassa	I + Asphal	t			1	00							SIEV	E AN/	ALYSI	S	
b.	Vesse	l Empty												25.4	-	-	100	90-100
с.	Aspha	lt a –b	8	85		ssing	80 60							19.0	95	11. 3	88. 7	70-90
d.	Vesse Aggre	l gate	+			ed %	40							12.7	20 5	24. 4	64. 3	55-80
		-					20 0 0 01	0	1	1	10	10	0					
							0.01	0		-	10	10	~					

sieve size in mm

e.	Aggregate d-b	837					9.5	79	9.4	54. o	47-70
f.	Filter + filler	11					6.35	99	11. 8	9 43. 1	40-60
g.	Filter Empty	7					2.36	78	9.3	33. 8	27-45
h.	Filler f-g	4					1.18	61	7.3	26. 6	20-34
i.	Total Aggregate e+h	841					0.60	47	5.6	20. 9	14-27
j.	Binder Content c- 1	44					0.30 0	51	6.1	14. 8	8-20
k.	Binder Content % 1*ex100	5.0					1.15 0	49	5.8	9.0	5-15
Ι.	Unsolve Bitumen						0.07 5	47	5.6	3.4	2-7
m.	Total K+L%										

The Quality Control Measure of Asphalt Mix Design as Solution to

Salihu Andaa Yunusa and Abubakar

Mechannen Alemades

Constructive of Kaduna Eastern By-pasa Road (with Spurits Rabah Road) -Contrast No. 5348

((three)

42

42

42

48

48

48

54 54

54

60

60

60

65 61.5

66 01

68 61

81.2

61.2

61.5

61

61

61

62.2

85.1

61.2

1198

1190

1194

673

670

671

+

% of Bitumen

W,%

Nu

1

2

8

AVERAGE

4

8

6 AVERAGE 7

8

10

11

12

AVERAGE

13

14

15

AVERAGE

Bit. Censily = 60/70

Bit. Penetration = 60/70

W.,%

4

4

4

4,5

4.6

4.5

8

5

5

5.5

5.5

5.5

8

6

6

	1.1.1.1	1.1	1000		Yold	VMA	Void in	Theolitical	Compadied	Vol. of	Wt after	Weight	Wit in		Helg/M.	Sample	
FORMULAR	Carrisched	CantileBive	Elaberty	Files	Alled with	*	MDC76	Danally	Density	15pec	1.10	In HO ₂ (p)	All 190	Avelage	3	5	1
	- convert	nakio.	ret	mm	195. 19. W		Ve.	Dr.	DESIGN	VEBC	SCANDO (8)	ALT DIME	ACOL	inn	mm	10.05	mm
-		0.76							DEGIGIN	YOL MIN	Len COUN	ALT DIRL	Marn				
	80	0.76	11.0	2.9	1				2.29	522	1197	875	1394	62.3	62	63	62
	0.0	0.79	11.7	2.0				1	2.3	521	11291	550	1190	62.0	52.7	62.5	62.5
V = B - U	0.0	9.78	11,0	2.9	1000				2.28	525	1200	675	1198	62.3	62.5	62.5	62
	8.9			2.8	54.2	15.93	7.29	2.47	2.29				_				
Op = A	9.9	0.76	12.8	3.8			_		2.3	519	1198	679	1195	62.3	62	63	62
	9	0.76	11.0	8.8		1	- 10		2,31	618	1197	679	1197	62.5	82.5	62,5	62.5
	10.4	0,76	13.0	4					2.3	521	1202	681	1199	62.5	62.5	62.4	62.5
D ₇ 100 + W ₄	9.7		1	3.9	62.8	16	6.12	2.45	2.3								
100 + Wa	10.6	0.76	13.6	4.3					2.33	615	1201	686	1199	61,1	61	81.2	61
8, G,	10.8	0.76	13.9	4.3					2.3	619	1198	679	1198	61.1	61.2	61	61
	10.6	0,76	13,6	4					2.93	612	1191	665	1164	86.9	01	61	60.8
Vn = Dt - Dt X 105	10.7			4.2	68.7	15.72	4.92	2.44	2.32								
Dy	9.5	0.76	12.3	4.0					2.3	621	1199	678	1198	60.6	81	50.5	60
0 ₁₆ = 100	9	0.78	11,9	5					2.29	523	1198	675	1197	60	60.5	80	59.5
836 + 136 + PT	9,2	0.78	12.1	5.					2.3	518	1193	675	1191	59.9	50.B	59.7	59.8
6, 0, 0,	9.2			5	70.6	16.88	4.00	2.42	23								

ENSIO GUILLARI

7.8

18.5

8

8.1

M.

VMA = 100 - Dp (108 - Wa)

VMA - Vs X 100

VMA P_{in} = 100 <u>(G_{eff} - G_{eff}</u>) X.G_e (Geff - G_{eff})

Gat

10.2

11.2

10.6.

8

5.0

6.1

6

= 2.741

0.76

0.76

0.76

1198

1197

1195

Coarse Ag g= 58%

Agg. Mix density = 2.589

Fine Agg + =42%

525

527

524

2,29

2.27

2.28

2.28

2.41

5.39

18.04

Fine

70.1

Coarse Agg. Vol. density = 2.535

12

APPENDIX A TEMPERATURE CONTROL BINDER COURSE

S/No	Truck	Arrival	Departure	Arrival	Laying	Rolling	Chang
	Identification	Time	Time	Temperature	Temperature	Temperature	Before
1	XB627SNK	12:26pm	12:40pm	150 ^{0c}	125 ^{°C}	100 ⁰⁰	10+00
2	XA637KRU	12.47pm	12:56pm	150 ^{0c}	125 ^{°C}	100 ⁰⁰	9+980
3	XA639KRU	1:12pm	1:19pm	150 ^{°C}	125 ^{°C}	100 ⁰⁰	9+955
4	XA638KRU	1:20pm	1:37pm	150 ^{0c}	125 ^{°C}	100 ⁰⁰	9+930
5	XB271SNK	1:55pm	2:03pm	150 ^{°C}	125 ^{°C}	100 ⁰⁰	9+905
6	XB267SNK	2:12pm	2:19pm	150 ^{°C}	125 ^{°C}	100 ⁰⁰	9+880
7	XA637KRU	2:25pm	2:37pm	150 ^{°C}	125 ^{°C}	100 ⁰⁰	9+855
8	XA639KRU	2:56pm	3:03pm	150 ^{°C}	125 ^{°C}	100 ⁰⁰	9+830
9	XA638KRU	3:17pm	3:22pm	150 ^{°C}	125° ^C	100 ⁰⁰	9+800
10	XB671SNK	3:40pm	3:48pm	150 ^{oC}	125° ^C	100 ⁰⁰	9+775

APPENDIX B

TABLE 2 FINE AGGREGATE

BS 410 test	Percentage by weight passing BS sieves							
	Grading Zone	Grading Zone	Grading Zone	Grading Zone				
	1	2	3	4				
mm								
10.0	100	100	100	100				
5.00	90.100	90-100	90-100	95-100				
2.36	60-93	75-100	85-100	95-100				
1.18	30-70	55-90	75-100	90-100				
μm								
600	15-34	35-59	60-79	80-100				
300	5-20	8-30	12-40	15-50				
150	0-10	0-10	0-10	0-15				

Table VI-17	Properties	of Compacted	Asphaltic Concrete
-------------	-------------------	--------------	--------------------

Property	Base-course	Wearing-course
Optimum Bitumen Content	4.5% -6.5%	5.0%-8.0%
Stability not less than	3.5KN	3.5Kn
Flow	2mm-6mm	2mm-4mm
Void in total mixture	3%-8%	3%-5%
Voids filled with bitumen	65%-72%	75%-82%

Table VI13 Aggregate specification for Dense Bitumen Macadam, Asphaltic Base and Wearing Course

Pavement Course	Aggregate	Flakiness Index	Absorption Factor
	Crushing Value		

The Quality Control Measure of Asphalt Mix Design as Solution to

Salihu Andaa Yunusa and Abubakar Muhammad Ahmadu

Dense Bitumen	30	35	1.5
Macadam Base			
Dense Bitumen	30	35	0.5
Macadam Wearing-			
course			
Asphaltic Concrete	30	35	0.5
Base course			
Asphaltic Concrete	30	35	0.5
Wearing Course			

Table VI 16 Grading Envelope for Binder and Wearing Courses

Sieve Size	% By Weight Passing	
	40mm-65mm	40mm -50mm
	Binder-Course	Wearing –Course
31.8mm	100	100
25mm	90-100	100
19.0mm	70-90	100
12.5mm	55-80	85-100
9.5mm	47-70	75-92
6.4mm	40-60	65-82
2.8mm	27-45	50-65
1.25mm	20-34	36-65
600µm	14-27	26-40
300µm	8-20	18-30
150µm	5-15	13-24
75µm	2-7	7-14
Bitumen Content % by	4.5 – 6.5	5-8.0
weight of aggregate		

BITUMINOUS MATERIAL TABLE VI 15 QUALITY OF ASPHALTIC CEMENT

Property	Asphalt Cement	
	80-100PEN	60-70PEN
Specific Gravity @ 25°C	1.00-105	1.01-1.06
Softening Point R and B(°C)	45-52	48-56
Penetration @ 25°C – 0.1mm	80-100	60-70
Ductility @ 25oC-CM Minimum	100	100
Loss on Heating for 5 Hours at 163oC	0.5	0.5
% By Weight – Max		
Solubility in CS_2 , % by WT-MIN	99	99
Drop in Penetration After Heating %	20	20
Original – max		

Flash point (Open CUP) °C Min.	225	250
ASH % by WT.Max	0.5	0.5

Table VI 18 Permissible Variation Percent by Weight of Total Mix

	Permissible variation % by Weight of Total mix
Passing sieve 9.5mm and layer	±5%
Passing sieve 9.5mm - 600µm	±4%
Passing 600µm - 150µm	±3%
Passing sieve 150µm-75µm	±0.1%
Bitumen content	±0.3%
Notes: Temperature of Mixture when emptied form mixer Temperature of Mixture on delivery on the road	145°C± 5°C 130°C + 5°C

The job mix formula is liable to alteration by the Engineer throughout the progress of the work but at all times it will be within the specified limits.

APPENDIX C

1/2"

18%

TEST RESULT ON EKSIOGULLATRI AGGREGATE

AGGREGATE		SPECIFIC
SIZE	BULK DENSITY	GRAVITY
3/4"	1.722	2.639
1/2"	1.589	2.621
Dust	1.466	2.631
River sand sand clay	1.447	2.595
content sand silt	1.50%	
content	98.50%	
3/8	1.498	2.60
AGGREGATE		ELONGATION
<u>SIZE</u>	FLAKINESS INDEX	INDEX
3/4"	22.90%	25%

24.00%

The Quality Control Measure of Asphalt Mix Design as Solution to Pavement Failure

Salihu Andaa Yunusa and Abubakar Muhammad Ahmadu

TEST RESULT ON EKSIO QUARY AGGREGATE AS AT 18Th march 2011

2.467
2.615
2.705
20.78%
12.5%

AGGREGATE CRUSHING VALUE

3/4"

22% Nate: The experiment is performed on aggregate passing sieve 14.5mm and retained on 10mm