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Abstract: The consequences of applying OLS to a relationship with 
autocorrected disturbances are qualitatively similar to those already derived for 
the heteroscedastic case, namely unbiased but inefficient estimation and invalid 
inference procedures. As in the case of heteroscedasticity, in the presence of 
autocorrelation, the OLS estimators are still linear unbiased as well as 
consistent and asymptotically normally distributed, but they are no longer 
efficient (i.e., minimum variance). In the case of heteroscedasticity, we 
distinguish two cases and the possible cause and sources of autocorrelation. 
The violation of the assumptions of normality may have significant 
consequences in applying OLS and such consequences include substantial loss 
in efficiency, inflating the precision or accuracy of the estimators by 
underestimating the standard error of β. Moreover, violating of the assumptions 
of normally of the error term is important in econometric analysis. If this 
assumption is violated, then the basis of hypothesis testing breaks down. In this 
direction, a large number of possible tests for normality and robust estimator 
have been suggested. The assumption of lack of autocorrelation or serial 
correlation of the error term implies that the disturbance covariance at all 
possible pairs of observation points are zero. Violation provides the basis of for 
this research because it affects the consistency of the OLS estimators. Models 
with such disturbances are widespread, as applied econometrics especially in 
modeling of economic data. 
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INTRODUCTION 
A general source of autocorrelated disturbances is the fact that the disturbance represents the 
net influence of omitted explanatory variables. Economic theory cannot prescribe an exhaustive 
list of explanatory variables to be included in a relation and in any case, data limitations often 
curtail this number of variables that can be included. Exclusion of variables would not of itself 
impact autocorrelation to the disturbance term unless the excluded variables were 
autocorrelated. Even then autocorrelation in one explanatory variable might offset that in 
another. However, economic variables tend to be nonrandom over time and also to move 
roughly in phase so that excluded variables may impact autocorrelation to the disturbances 
term. A second source of autocorrelation may be a misspecification of the form of the 
relationship. 
 
A third possible source of autocorrelated disturbances may be measurement error in the 
dependent variable. Economic statisticians typically have various formalized routines and 
procedures for estimating economic magnitudes. The sequential publication of revised 
estimates is eloquent testimony of the fact that the creators of the series believed their products 
to contain some error and indeed a series becomes definitive simply when the statisticians stop 
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revising it, which is not to say that it is then free of error. It is unlikely that the estimating 
procedures produces errors which are random from period to period and so, letting the y 
vector denote the observed Y values and 푦∗ the true Y values generated by the 
mechanism 푥훽 + 휇, we have 

 
푦 =  푦∗ + 푣 = 푥훽 + (푢 + 푣)                                                                           (1) 

Where v is a vector of measurement errors. In the observed relationship, the disturbance term 
is u + v, which may exhibit autocorrelation through u or v or both. 
 
What happens to the OLS estimators and their variances if we introduce autocorrelation in the 
disturbances by assuming that 퐸(휇  휇 ) ≠ 0(푠 ≠ 0) but retain all the other assumptions of 
the classical model? Noting that we are now using the subscript t on the disturbances to 
emphasize that we are dealing with time series data. In the two-variable regression mode 
 

푌 = 훽 + 훽 푋 + 푈                                                                                          (2) 
 
we must assume the mechanism that generate 휇  for 퐸(휇  휇 ) ≠ 0(푠 ≠ 0)                            
is too general an assumption to be of any practical use. As a starting point, or first 
approximation, one can assume that the disturbances or error terms are generated by the 
following mechanism. 
 

휇 = 휌휇 + 휀      − 1 < 휌 < 1                                                                     (3) 
 
Where 휌 is known as the coefficient of autocovariance and where 휀  is the stochastic 
disturbance term such that it satisfies the standard OLS assumptions namely; 
 
       퐸(휀 ) = 0 

푣푎푟(휀 ) = 휎                                                                                                     (4) 
      푐표푣(휀 , 휀 ) = 0      푆 ≠ 0 
 
In the engineering literature, an error term with the preceding properties is often called a white 
noise error term. What equation 3 postulate is that; the value of the disturbance term in period 
t is equal to ρ times its value in the previous period plus a purely random error term. 
 
The scheme 3 is known as a Markov first-order autoregressive scheme, or simply a first - order 
autoregressive scheme, usually denoted as AR(1).The name autoregressive is appropriate 
because equation(3) can be interpreted as the regression of 휇  on itself lagged one period. it is 
first order because  휇  and its immediate past value are involved, that is the maximum lag is 1. 
If the model were 휇 = 휌 휇 + 휌 휇 + 휀 , it would be an AR(2),or second-order 
autoregressive scheme and so on. 
 
We note that ρ, the coefficient of Autocovariance in equation (5) can also be interpreted as the 
first-order coefficient of autocorrelation, or more accurately, the coefficient of autocorrelation 
at lag 1.given the AR(1) scheme, it can be shown that  

푣푎푟(휇 ) =∈ (휇 ) =
휎

1 − 휌                                                                      (5) 
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푐표푣(휇 ,휇 ) = 휖(휇 ,휇 ) = 휌
휎

1 − 휌                                            (6) 

푐표푣(휇 ,휇 ) = 휌                                                                                  (7) 
 
Where 푐표푣(휇 ,휇 ) means covariance between error terms s periods apart and where 
푐표푟(휇 ,휇 ) means correlation between error terms s period apart. We observe that because 
of symmetry property of covariances and correlations, 푐표푣(휇 ,휇 ) =  푐표푣(휇 ,휇 ) and 
푐표푟(휇 ,휇 ) =  푐표푟(휇 ,휇 ) 

 
Since ρ is a constant between -1 and +1, equation (5) shows that under the AR(1) scheme, the 
variance of  휇  is still homoscedastic, but 휇  is correlated not only with its immediate past values 
but its values several periods in the past. 
 
One reason we use the AR (1) process is not only because of its simplicity compared to higher-
order AR schemes, but also because in many applications, it has proved to be quite useful. 
Additionally, a considerable amount of theoretical and empirical work has been done on the 
AR(1)scheme.  
 
In the two variable regression model given in equation (2).the OLS estimator of the slope 
coefficient is 
 

훽 =
∑ 푥 푦
∑푥

                                                                                                         (8) 

 
and its variance is given by 

푣푎푟 (훽 ) =
휎
∑ 푥

                                                                                                 (9) 

 
Where the small letters as usual denote deviation from the mean values 
 
Now under the AR (1) scheme, it can be shown that the variance of this estimator is 
 

푣푎푟 (훽 ) =
휎
∑ 푥

1 + 2휌
∑푥 푥
∑푥

+ 2휌
∑푥 푦
∑푥

+ ⋯+ 2휌
∑ 푥 푦
∑ 푥

        (10) 

 
Where 푣푎푟 (훽 ) AR(1) means the variance of 훽  under a first-order autoregressive scheme.  
 
A comparison of equation (10) with equation (9) shows the former is equal to the latter times a 
term that depends on ρ as well as the sample autocorrelation between the values taken by the 
regressor x at various lags. 
 
To give some idea about the difference between the variances given in equations (9) and 
equation (10), assume that the regressor x also follows the first-order autoregressive scheme 
with a coefficient of autocorrelation of r. Then it can be shown that equation (10) reduces to 

 

푣푎푟 훽 퐴푅(1) =
휎
∑푥

1 + 푟휌
1 − 푟휌

= 푣푎푟(훽 )푂퐿푆
1 + 푟휌
1− 푟휌

                   (11) 
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If for example, r = 0.7 and ρ = 0.9, using equation (11), we can check that 푣푎푟 훽 퐴푅(1) =  
4.405 푣푎푟훽 푂퐿푆. To put it another way; 

 

푣푎푟 훽 푂퐿푆 =  
1

4.405푣푎푟 훽 퐴푅(1) = 0.2270 푣푎푟 훽 퐴푅(1) 

 
That is the usual OLS formula (i.e. equation 9) will underestimate the variance of 훽 퐴푅 (1) by 
about (1 – 0.2270) = 77 percent. As can be seen, this result is specific for the given values of r 
and ρ. But the point of this exercise is to warn that a blind application of the OLS for 
procedures to compute the variances and standard errors of the OLS estimators could give 
serious misleading results and a major consequence. 

 
OLS ESTIMATION ALLOWING FOR AUTOCORRELATION 
훽  is not BLUE and even if we use 푣푎푟 훽 , the confidence intervals derived from there 
are likely to be wider than those based on the GLS procedures. This result is likely to be the 
case if the sample sizes increase indefinitely. That is 훽  is not asymptotically efficient. The 
implication of this finding for hypothesis testing is clear. We are likely to declare a coefficient 
statistically insignificant (i.e. not different from zero), even though in fact (i.e. based on the 
correct GLS procedure) it may be. This difference can be seen clearly from figure 1. In this 
figure, we show the 99% OLS [AR (1)] and GLS confidence intervals assuming that true 
훽 = 0. Consider a particular estimate of 훽 , say b2. Since b2 lies in the OLS confidence 
interval, we could accept the hypothesis that true 훽  is zero with 95 percent confidence .But if 
we were to use the (correct) GLS confidence interval; we could reject the null hypotheses that 
true 훽  is zero, for b2 lies in the region of rejection. To establish intervals and to test hypothesis, 
one should use GLS and not OLS even though the estimators derived from the later are 
unbiased and consistent. 
 

FIG.1. GLS and OLS 95% 
Confidence intervals 
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OLS ESTIMATION DISREGARDING AUTOCORRELATION 
The situation is potentially serious if we do not only use 훽  but also continue to use        

푣푎푟 훽 =  
∑

 which completely disregards the problem of autocorrelation, that is, we 

mistakenly believe that the usual assumptions of the classical model hold true. Errors will arise 
for the following reasons: 

 

A.  The residual variance 휎 = ∑
 is likely to underestimate the true 휎   

B.  As a result, we are likely to overestimate R2 
C.  Even if 휎  is not underestimated, 푣푎푟 훽  may underestimate 푣푎푟 훽 AR(1) equation 

(10), its variance under (first-order), autocorrelation, even though the latter is inefficient 
compared to 푣푎푟 훽   

D.  Therefore, the usual t and F tests of significance are no longer valid and if applied, are 
likely to give seriously misleading conclusions about the statistical significance of the 
estimated regression coefficients. 

 
To establish some of these properties under the two variable model, the classical assumption 

휎 =
∑푈
푛 − 2 

 
Provides an unbiased estimator of 휎 ,  that is, 퐸(휎 ) =  휎 . But if there is autocorrelation 
given AR(1),it can be shown that                  

 

퐸(휎 ) =
휎 {푛 − [2/(1 − 휌)]− 2휌푟}

푛 − 2
                                                              (12) 

where 

푟 = 푥 푥 푥 ,  

 
which can be interpreted as the (sample) correlation coefficient between successive values of 
the X’s. If ρ and r are both positive (not an unlikely assumption for most economic time 
series), it is apparent from equation (12) that 퐸(휎 ) < 휎 , that is, the usual residual variance 
formula, on the average, will underestimate the true 휎 . 
 
In otherwords, 휎  will be biased downward. Needless to say, this bias in 휎  will be transmitted 
to 푣푎푟 훽   because in practice we estimate the latter by the formula 휎 ∑푥⁄ . But even if 
휎  is not underestimated, 푣푎푟 훽  is a biased estimator of 푣푎푟 훽 퐴푅(1), which can be 
readily seen by comparing equation (9) with equation (10), for the two formulars are not the 
same. As a matter of fact, if ρ is positive (which is true of most economic time series) and the 
x’s are positively correlated (also true of most economic time series), then it is clear that 

 
푣푎푟 훽 < 푣푎푟 훽 퐴푅1                                                                          (13) 

 
that is, the usual OLS variance of 훽  underestimates its variance under AR1 (see equation 11). 
Therefore, if we use 푣푎푟 훽 , we shall inflate the precession or accuracy (i.e. underestimate 
the standard error) of the estimator 훽 . As a result, in computing the t-ratio as 푡 = 훽 /푠푒(훽 ) 
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(Under the hypothesis that 훽 = 0), we shall be overestimating the t-value and hence the 
statistical significance of the estimated 훽 . The situation is likely to get worse if additionally 휎  
is underestimated, as noted previously. 
 
To see how OLS is likely to underestimate 휎  and the variance of 훽 , let us conduct the 
following Monte Carlo experiment. Suppose in the two variable model, we “know” that the true 
훽 = 2 푎푛푑 훽 = 0.6. Therefore, the stochastic PRF i.e. (Population Regression function) is  
 

푌 = 2.0 + 0.6푋 + 휇                                                                                       (14) 
 
Hence 

퐸(푌 /푋 ) = 2.0 + 0.6푋                                                                                   (15) 
 

which gives the true population regression line 
 

Let us assume that  휇  are generated by the first-order autoregressive scheme as follows: 
 

휇 = 0.8휇 + 휀                                                                                            (16) 
 
where 휀  satisfy all the OLS assumptions. We assume further for convenience that the 휀  are 
normally distributed with zero mean and a unit variance. Equation (16) postulates that the 
successive disturbances are positively correlated with a coefficient of autocorrelation of +0.8, a 
rather high degree of dependence. 

 
Table 1: A Hypothetical Example of Positively Autocorrelated Error Terms 

푿풕 휺풕 흁풕 = ퟎ.ퟖ흁풕 ퟏ + 휺풕 
0 0 휇 = 7 (푎푠푠푢푚푒푑) 
1 0.185 휇 = 0.8(7) + 0.185 = 5.785 
2 -0.487 휇 = 0.8(5.785) − 0.487 = 4.141 
3 2.555 휇 = 0.8(4.141) + 2.555 = 5.867 
4 -1.811 휇 = 0.8(5.8678)− 1.811 = 2.883 
5 0.815 휇 = 0.8(2.883) + 0.815 = 3.121 
6 0.480 휇 = 0.8(3.121) + 0.480 = 2.977 
7 -0.942 휇 = 0.8(2.977) − 0.942 = 1.440 
8 2.312 휇 = 0.8(1.440) + 2.312 = 3.464 
9 0.244 휇 = 0.8(3.464) + 0.244 = 3.015 
10 0.059 휇 = 0.8(3.015) + 0.059 = 2.471 

 
Now using a table of random normal numbers with zero mean and a unit variance, we 
generated 10 random numbers as shown in table 1 and then by the scheme (16),we generated 
휇 . To start off the scheme, we need to specify the initial value of µ, say 휇  =7 
 
Suppose the value of x are fitted at 1, 2, 3, …, 10. Then, given these x’s, we can generate a 
sample of 10 Y values from equation (14) and the value of 휇   given in table in table 1 
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Table 2: Generation of Y Sample Values 
푿풕 흁풕 풀풕 = ퟐ.ퟎ + ퟎ.ퟔ푿풕 + 흁풕 
1 5.785 푌 = 2.0 + 0.6(1) + 5.785 = 8.385 
2 4.141 푌 = 2.0 + 0.6(2) + 4.141 = 7.341 
3 5.8678 푌 = 2.0 + 0.6(3) + 5.8678 = 9.668 
4 2.883 푌 = 2.0 + 0.6(4) + 2.883 = 7.283 
5 3.121 푌 = 2.0 + 0.6(5) + 3.121 = 8.121 
6 2.977 푌 = 2.0 + 0.6(6) + 2.977 = 8.577 
7 1.440 푌 = 2.0 + 0.6(7) + 1.440 = 7.640 
8 3.464 푌 = 2.0 + 0.6(8) + 3.464 = 10.264 
9 3.015 푌 = 2.0 + 0.6(9) + 3.015 = 10.415 
10 2.471 푌 = 2.0 + 0.6(10) + 2.471 = 10.471 

 
휇  data are obtained from table 1. 
 
If we regress Y on X, we obtain the following (sample) regression: 

 
푌 = 7.3232 + 0.2715푋                                                                                  (17) 

푟 = 0.6421, 푟 = 0.4123 
휎2 = 1.0838 

 
Whereas the true regression line is given by equation (15).The fitted regression line distorts the 
true regression line. It seriously underestimates the true slope coefficient but overestimates the 
true intercept. We note that the OLS estimators are still unbiased. 
  
The 휇̂  are generally close to the fitted line which is due to the OLS procedure but deviate 
substantially from the true Population Regression Line (PRL). Hence, they do not give a 
correct picture of 휇 . To gain some insight into the extent of underestimation of true 휎2,  
suppose we conduct another sampling experiment Keeping the xt and  
휀  given in tables 1 and 2 let us assume that ρ = 0, that is, no autocorrelation. The new sample 
of Y values thus generated is given in table 3 
 
Table 3: Sample of Y Values with Zero Serial Correlation 

푿풕 휺풕 = 흁풕 풀풕 = ퟐ.ퟎ + ퟎ.ퟔ푿풕 + 휺풕 
1 0.185 2.785 
2 -0.487 2.713 
3 2.555 6.355 
4 -1.811 2.589 
5 0.815 5.815 
6 0.480 6.080 
7 -0.942 5.258 
8 2.312 9.112 
9 0.244 7.644 
10 0.059 8.059 
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The regression based on table 3 is as follows: 
 

푌 = 2.173 + 0.630  푋                                                                           (18) 
푟 = 0.8196,푟2 = 0.6717 

휎2 = 2.004 
 
This regression in (18) is much closer to the “truth “because the Y’s are now essentially 
random. We observe that 휎2 has increased from 1.0838 at ρ = 0.8 to 2.004 at ρ = 0. This result 
is in line with the theoretical result considered in Monte-Carlo experiment 
 
CONCLUSIONS 
The solution to be adopted in each particular case depends on the source of autocorrelation. 
Thus if the source is omitted variables the appropriate procedure is to include these variables 
in the set of explanatory variables. The simplest way to detect whether autocorrelation is due to 
omitted variables is to regress the residues 휀′푠, against variables which, on a priori grounds 
might be relevant explanatory variables of the phenomenon being studied.  
 
Similarly if the source of autocorrelation is the mis-specification of the mathematical form of 
the relationship, the relevant approach is to change the initial (linear) form. This can be 
investigated by regressing the residuals against higher powers of the explanatory variable(s),or 
by computing a “linear in logs” form and re-examining the resulting new residuals. 
 
Only when the above sources of autocorrelation have been ruled out should we accept that the 
true µ’s are temporally dependent. For this case ( of true autocorrelation) the appropriate 
procedure is the transformation of the original data so as to produce a model whose random 
variable satisfies the assumptions of classical least squares, and consequently the parameters can 
be optimally estimated with this method. Once autocorrelation is detected by applying any 
relevant test, the appropriate corrective procedure is to obtain an estimate of the ρ’s and apply 
OLS to a set of transformed data. The transformation of the original data depends on the 
pattern of the autoregressive structure. 
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