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ABSTRACT

The time plot of a realisation ECPI of the series in Figure 1 reveals a slightly
upward secular trend with no clear seasonal component. Seasonal (i.e. 12-
monthly) differencing yields the series SDECPI which has a fairly
horizontal trend and still no clear seasonality (see Figure 2). Augmented
Dickey Fuller (ADF) unit root test adjudges both series ECPI and SDECPI
as non-stationary. Non-seasonal differencing of SDECPI vyields the series
DSDECPI. Its time plot of Figure 3 reveals an overall horizontal trend and
no clear regular seasonality. The ADF test shows that DSDECPI is seasonal.
Its autocorrelation function in Figure 4 exhibits a significant negative spike
at lag 12, an indication of 12-monthly seasonality and the presence of a
seasonal moving average component of order one. Applying Surhatono’s
(2011) modelling steps, the initial (0, 1, 1)x(0, 1, 1)1 SARIMA fit is found
to be adequate.
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INTRODUCTION

Most economic and financial time series are known to exhibit some seasonality as well as
volatility. Price indices are inclusive. For instance, Etuk (2012a) observed Monthly Nigerian
Composite Consumer Price Indices to be seasonal of period 12 months. Seasonal series may
be modelled by seasonal Box-Jenkins or seasonal autoregressive integrated moving average
(SARIMA) methods (Box and Jenkins, 1976).

Of recent a lot of researchers have shown renewed interest in the application of SARIMA
models to model seasonal time series. A few of these are Ismail and Mahpol (2005), Linlin
and Xiaorong (2012), San-Juan et al., (2012), Saz(2011), Luo et al., (2013), Arumugam and
Anithakumari (2013), Surhatono (2011), Surhatono and Lee(2011), Etuk(2012b, 2013a,
2013Db), Osabuohien-Irabor (2013), Etuk and Amadi (2013) and Etuk et al., (2012).

In this work Nigerian Export Commodity Price Indices are to be modelled using SARIMA
methods. Etuk (2014) has shown that for intrinsically seasonal models SARIMA techniques
do better than just autoregressive integrated moving average (ARIMA) ones.

MATERIALS AND METHODS

The data for this work are 156 monthly Nigerian Export Commodity Price Indices from 2000
to 2012 obtainable from the website of the Central Bank of Nigeria, www.cenbank.org. It is
published in the 2012 Statistical Bulletin — Section D (Read Only) as All SITC Product
Export Price Index of Table D. 4.1. The Base Period is January 2007.
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Sarima Model
A stationary time series {X;} is said to follow an autoregressive moving average model of
order p and g, denoted by ARMA(p, q), if it satisfies the following difference equation.

Xe =K Xpq— X Xeg— oo — X Xp g = & + Pr1&1 + Posrz+ .+ Puérq (1)
Or
A(L)Xt = B(L)gt (2)

Where; {&} is a white noise process and the o’s and the 3’s are constants such that the model
is both stationary and invertible. A(L) = 1 - asL - 0pL? - ... - oL” and B(L) = 1 + ByL + B,L°
+ ... + B4L% where L is the backward shift operator defined by L*%, = X

Many real-life time series are not stationary. For such a series {X;}, Box and Jenkins(1976)
proposed that differencing to a sufficient degree could make it stationary. Let d be such a
degree. That is, the d™ difference of X; namely VX, is stationary. If the series {V'X}
follows an ARMA (p, q) model, then {X:} is said to follow an autoregressive integrated
moving average of orders p, d and g, designated ARIMA(p, d, ).

If {Xi} is seasonal of period s, let VoX; = X; — X be the seasonal difference of X; once. Then
Vs =1 - L°. Suppose that the minimum order to which the series {Xt} would be differenced
seasonally for stationary is D. Box and Jenkins (1976) proposed that {X:} may be modelled

by

AL)D(L)VIVEX, = B(L)O(L)e, (3)

Where; ®(L) and O(L) are polynomials. Their coefficients are such that the model is both
stationary and invertible. Suppose that they are of orders P and Q respectively. The model (3)
is called a multiplicative seasonal autoregressive integrated moving average model of orders
p,d, g, P, D, Qand s,designated (p, d, q)x(P, D, Q)s SARIMA model.

Surhatono (2011), using moving average symbolism distinguishes between three types of
SARIMA models. He says for a seasonal period of s, a subset SARIMA is of the form

VIVOX, = & + Brér—1 + BsEros + Bsi18r-s-1 (4)

If Bs+1 # B1Ps Otherwise it is multiplicative. If Bs+1 = O then the model is said to be additive.
He then proposed the following modelling steps:

Fit a subset SARIMA model. If Bs«1 = 0, then fit the additive model. Otherwise, check for
multiplicativity.

Sarima Model Fitting

Order determination is invariably the first step of model building. Often it is done by
graphical approach. The time plot could show up the period s of seasonality if the seasonal
pattern, if existent, is of sufficient regularity. Often this is not the case. The correlogram
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could better reveal a seasonal tendency by a significant spike at the corresponding lag. If the
spike is negative, the presence of a seasonal moving average (MA) component is suggestive;
if positive, a seasonal autoregressive (AR) component is suggestive.

The orders of differencing, both seasonal D and non-seasonal d, are usually such that they
sum up to at most 2. Traditionally, putting D = d = 1 is enough to yield a stationary series. At
each stage, before and after differencing, the Augmented Dickey Fuller (ADF) unit root test
shall be used to test for stationarity. The autocorrelation function ACF could give indication
of an estimate of g as the cut-off point. Similarly the partial autocorrelation function, PACF,
cuts off, if at all, at a lag estimating p. The numbers P and Q are similarly estimated by the
seasonal cut-off points on the PACF and the ACF respectively.

With the orders determined the parameters could be estimated. Invariably the involvement of
items of a white noise process in the model necessitates the use of non-linear optimization
techniques in its estimation. An initial estimate is usually made and by an iterative process
the estimate is sequentially improved upon until optimality is attained. The optimization
criterion could be the least error sum of squares, the maximum likelihood or the maximum
entropy procedure, etc. There is a linear optimization technique based on the Yule-Walker
equations for the fitting of purely AR models. The duality relationship of AR and MA models
is exploited to fit purely MA models by the same principles (See, e.g. Oyetunji, 1985).

After model fitting the fitted model is subjected to goodness-of-fit tests to ascertain its
adequacy. A good fit is indicative if the residuals are uncorrelated with zero mean and are
normally distributed. In this work use is made of the software Eviews for all the data analysis.
For model estimation this package uses the least error sum of squares technique.

RESULTS

The time plot of ECPI in Figure 1 shows a slightly positive secular trend with no clear
seasonality. Seasonal (i.e. 12-monthly) differencing yields the series SDECPI which has an
overall horizontal trend with no clear seasonality (see Figure 2). A non-seasonal difference of
SDECPI produces the series DSDECPI with an overall horizontal trend and no clear seasonal
component (See Figure 3). With statistic values of -2.3 for ECPI, -2.8 for SDECPI and -6.43
for DSDECPI and the 1%, 5% and 10% critical values of -3.5, -2.9 and -2.6 respectively, the
ADF unit root test confirms both ECPI and SDECPI as non-stationary and DSDECPI as
stationary.

The correlogram of DSDECPI in Figure 4 shows negative significant spikes in the ACF as
well as the PACF at lags 1 and 12. There is therefore seasonality of period 12 months as well
as a seasonal MA component of order one. By Surhatono’s (2011) modelling steps, the initial
(0,1, 1)x(0, 1, 1)1 SARIMA model is estimated as summarized in Table 1 as

DSDECPI, = g - 0.4227¢.1 - 0.8575¢..1, + 0.3248¢13 (5)
(+0.0767) (+0.0656) (+0.3248)

which clearly is multiplicative. It is adequate for the following reasons: firstly, the fitted

model agrees closely with the data as evident from Figure 5; secondly, the correlogram of the
residuals in Figure 6 shows that the residuals are uncorrelated.
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CONCLUSION
Nigerian Export Commodity Price Indices have been shown to follow an (0, 1, 1)x(0, 1, 1)1,
SARIMA model. This has also been demonstrated to be adequate.
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Dependent Variable: DSDECPI

Method: Least Squares

Date: 101813 Time: 08:33

Sample(adjusted): 2001:02 2012:12

Included observations: 143 after adjusting endpoints
Convergence achieved after 14 iterations

Backcast: OFF (Roots of MA process too large for backcast)

Wariable Coefficient  Std. Error  t-Statistic Prob.
MA(T) 0422748 0076691  -5.512340  0.0000
MA(12) 08575637 0065634 -13.06544  0.0000
MA(13) 0324845 0094857 3424568  0.0008

R-squared 0422328 Mean dependent var -0.780839
Adjusted R-squared 0414075 S.0. dependent var 31.86430
S E. of regression 24 39076  Akaike info criterion 9247041
Sum squared resid 83287 27 Schwarz criterion 9309199
Laog likelihood -658.1635 F-statistic 51.17595
Durbin-WWatson stat 1.986245 Prob(F-statistic) 0.0oooo0
Inverted MA Roots 99 JB6+.49i 86 - 49 .50 -85

B0+ 85 38 00+ .99 .00 -.99i

- 49+ 861 -49 -85 -.85 -.49i -85+ 49
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Figure 6: Correlogram of the Residuals
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