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Abstract: Deformation study is one of the main research fields in geodesy. Deformation study 
comprises measurement, processing and analysis phases, Measurement techniques can be 
divided into geotechnical, structural and geodetic methods. Geotechnical and structural 
methods uses equipment such as tiltmeters, Pseodolites, Laser scanners e.t.c to measure changes 
in length, inclination, relative height, strains e.t.c.  The geodetic methods are of two basic types, 
the reference and relative methods. This study focuses on the deformation analysis using the 
geodetic method known as the Least Absolute Sum Method. The method consists mainly of the 
independent adjustment of each of two epoch data, compatibility test on their a posteriori 
variances, followed by determination of Trend of movements for all the common points in the 
monitoring network. A triangulation network was designed (carefully selected) consisting of  
45  YTT series second order control  points within the study area (Lagos State) resulting in  a 
total of  63 triangles,189 observations and 90 unknown parameters with 99 degrees of 
freedom. The network adjustment was done using the method of least squares observation 
equations. The estimated variance factors for the 2D (horizontal) network were 
7.82989325645394e-08 and 7.7207636996395e-08 while 0.03944 and 0.052339 represent 
the estimated variance factors for the 1D (height) for the first and second epochs networks 
respectively. The compatibility of the two epoch data was tested with the variance ratio and 
compatibility test criteria. Actual displacement vectors were computed and transformed into 
the same computational base using S-transformation by Least Absolute Sum (LAS), stable and 
unstable points within the monitoring network were determined using Single Point 
displacement test, the displacement vector magnitude was computed for the two methods, 
represented graphically to indicate possible trend of movements that might have occurred. This 
study finds applications in studying the deformation of large engineering structures such as 
high rise buildings, bridges, dams, oil exploration zones, mining sites and land slide 
monitoring. 
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INTRODUCTION 
One important application of survey 
control networks is the detection of 
expected deformations at a specified area. 
This is done by measurements made at 
successive epochs and the most probable 
values of the coordinates are obtained using 
the well-known method of least squares 
(James, 1985). Any object, when acted upon 
by external forces, deforms, or exhibits 
changes in its size or shape. These 
observable changes are manifestations of 
internal stresses or pressures produced by 
the physical interaction of the external 
forces and the material itself. Materials 
either fail or tear when stresses exceed 
certain critical values. (Chrzanowski et al., 
1986). It is this risk of failure which 
practically necessitates deformation 
monitoring surveys, which allow the 
implementation of mitigating constructive 
procedures or evacuations to take place 
early enough, to prevent loss of life and 
material. 
 
Generally, the deformation measurement 
techniques can be divided into 
geotechnical, structural and geodetic 
methods. Geotechnical and structural 
methods are direct measurement  methods, 
which use special equipment to measure 

changes in length, inclination, relative 
height, strain, etc. (Teskey and Porter,1988; 
Chrzanowski, 1986). On the other hand, in 
the geodetic method there are two basic 
types of geodetic monitoring networks; 
namely the reference and relative networks 
(Chrzanowski et al., 1986). In a reference 
network, some of the points or stations are 
assumed to be located outside of the 
deformable body or object, thus serving as 
reference points for the determination of 
the absolute displacements of the object 
points. However, in a relative network, all 
surveyed points are assumed to be located 
on the deformable body. 
 
This study will focus only on the geodetic 
method using a relative network. In a 
geodetic monitoring network, the object or 
area under investigation is usually 
represented by a number of points which 
are permanently monumented or marked. 
All the points are then observed in two or 
more epochs of time. The geodetic 
monitoring network can be either a 
conventional (terrestrial) network, a 
photogrammetry (i.e., aerial or close-range) 
network, Global Positioning System (GPS) 
network or a combination of these network 
types. 
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Deformation analysis using the geodetic 
method mainly consists of a two-step 
analysis via independent adjustment of the 
network of each epoch which involves 
testing coordinate differences for 
significance, by comparison to the accuracy 
of their determination, followed by 
deformation detection between the two 
epochs. During deformation analysis it is 
important to determine the trend of 
movements (displacements) for all the 
common points in a monitoring network. 
The trend of movements, then form a basis 
for preliminary identification of the actual 
deformation models. Although deformation 
analysis is applicable to one-dimensional 
(1-D), two dimensional (2-D) and three-
dimensional (3-D) monitoring networks, 
for this study a 2D (horizontal) and 1D 
(vertical) networks of secondary controls 
located around Lagos State were 
investigated, a robust method, Least 
Absolute Sum (LAS) was used for 
deformation detection and analysis.  
 

STUDY AREA 
The study area is Lagos state and it is the 
commercial nerve centre and the most 
populous city in Nigeria. Lagos State is 
Nigeria's largest commercial, financial and 
industrial hub. It has industrial zones 
around the state with over 2000 small, 
medium and large scale industries. It is 
regarded as the smallest state in the 
country; however, it has the highest 
population density in the nation. Lagos is 
geographically located on latitudes and 
longitudes 6°35′ N 3°45′ E   and 6.583°N 
3.750°E Coordinates. Lagos State has a land 
mass of about 3,577 square kilometres with 
about 787 constituting lagoons, swamps, 
marches and creeks. Lagos harbours most 
of the high rise buildings, bridges and 
engineering structures prone to 
deformation or subsidence. Lagos has 
several networks of control points spread 
across different parts of the state to which 
surveys are tied. For this study, Secondary 
controls located in Lagos state were used.  

http://tools.wmflabs.org/geohack/geohack.php?pagename=Lagos_State&params=6_35_N_3_45_E_region:NG_type:adm1st
http://tools.wmflabs.org/geohack/geohack.php?pagename=Lagos_State&params=6_35_N_3_45_E_region:NG_type:adm1st
http://en.wikipedia.org/wiki/Geographic_coordinate_system
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 1.0 Administrative map of Lagos state 

 
 
 
 
 
 
 
 
 
 
DATA ACQUISITION 
The study has been executed with an 
existing geodetic data acquired using the 
conventional surveying technique.  An 
existing data of a set of control points was 
used to design a reference network. The 
data used were second order two 
dimensional control point coordinates 
obtained from the office of the Surveyor-
General of Lagos State while the 
Orthometric heights for these selected 
stations in the network are derived from 
EGM 2008. A total of 45 common stations 
coordinates were used for the two epochs. 
Note that second epoch data in this case 

was simulated from the adjustment of the 
first epoch data for the purpose of this 
study. Table 3.0, below shows the 
coordinates of the first and second epoch 
data. 
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Table 3.0: The Coordinates of the First and Second Epoch Data 
 FIRST EPOCH SECOND EPOCH 

S/N 

CONTROL 

POINT 

NAME EASTINGS(m) NORTHINGS(m) HEIGHT(m) EASTINGS(m) NORTHINGS(m) HEIGHT(m) 

1 YTT1 512770.871400334; 718266.132200109; 22.69139892 512770.871403101; 718266.132201002; 22.6714836 

2 YTT2 514506.700499577; 718531.839799538; 22.69178864 514506.700502712; 718531.839892683; 22.6177766 

3 YTT3 512893.348699673; 714574.324598699; 22.32421379 512893.348696706; 714574.324682748; 22.0283972 

4 YTT4 515558.463298852; 713569.142998863; 22.31915793 515558.463313656; 713569.143971483; 22.1792805 

5 YTT5 516586.611797575; 714276.855800185; 22.44819168 516586.611803276; 714276.855808693; 22.4573541 

6 YTT6 518643.696295812; 713094.787300631; 22.27584535 518643.696301644; 713094.787305278; 22.1277046 

7 YTT7 514352.907099268; 714685.214899466; 22.40743677 514352.90709294; 714685.215000243; 22.3007829 

8 YTT8 517061.729398256; 715437.606801309; 22.54378808 517061.729400602; 715437.606814866; 22.6728747 

9 YTT9 518422.044396225; 714609.031901365; 22.43557176 518422.044396833; 714609.031912447; 22.4370771 

10 YTT10 520125.232796594; 713647.970001077; 22.37953996 520125.232796485; 713647.97000797; 22.3638133 

11 YTT11 521363.15129068; 715052.213702974; 22.48641337 521363.151281339; 715052.213730621; 22.569482 

12 YTT12 518498.663596491; 716974.489604158; 22.69806547 518498.663595936; 716974.489641336; 22.9511293 

13 YTT13 514108.928199661; 717481.663299636; 22.61380567 514108.928201137; 717481.663397287; 22.5929253 

14 YTT14 515601.588799851; 717526.274999398; 22.70542529 515601.588808979; 717526.275961109; 22.868333 

15 YTT15 516950.750999607; 716775.036400767; 22.6656666 516950.7510017; 716775.036407083; 22.851861 

16 YTT16 517138.43110192; 717714.634600756; 22.76961739 517138.431104485; 717714.634610646; 23.058185 

17 YTT17 520079.581892186; 717605.081806163; 22.75625371 520079.58188775; 717605.081862575; 23.0669356 

18 YTT18 521384.589782752; 716820.772199095; 22.65590067 521384.589767459; 716820.772291492; 22.8672022 

19 YTT19 521584.838793279; 713648.512600229; 22.32802007 521584.838781533; 713648.512604235; 22.2474788 

20 YTT20 523697.284691038; 712610.341101032; 22.17827755 523697.284674975; 712610.341115527; 21.9320408 

21 YTT21 525256.684295581; 712069.400902666; 22.09307778 525256.684279801; 712069.400939104; 21.7478426 

22 YTT22 523497.609891544; 714124.578899686; 22.3578494 523497.609877763; 714124.578999448; 22.304579 
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23 YTT23 525443.708593041; 714191.748497196; 22.32616293 525443.708582496; 714191.748578731; 22.212263 

24 YTT24 527124.733799406; 713617.755492013; 22.25907939 527124.733796371; 713617.755536764; 22.0740095 

25 YTT25 522501.845287421; 715583.224899734; 22.49919981 522501.845274277; 715583.225000239; 22.5282929 

26 YTT26 526736.830187412; 715474.552392427; 22.45949366 526736.830178688; 715474.552433881; 22.4668134 

27 YTT27 527887.037415264; 714977.706471458; 22.40016023 527887.037436763; 714977.706532537; 22.3521075 

28 YTT28 518840.786597038; 718875.794609559; 22.89331219 518840.786598495; 718875.794694225; 23.3294166 

29 YTT29 520145.435490858; 718953.625408137; 22.9183092 520145.435486309; 718953.625481671; 23.4036233 

30 YTT30 522444.869566192; 719783.514112478; 22.97815103 522444.869536483; 719783.514127727; 23.494706 

31 YTT31 522025.385573317; 718114.274704924; 22.79568104 522025.385549735; 718114.274751322; 23.1433067 

32 YTT32 523186.583369713; 717539.965614425; 22.71579058 523186.583341969; 717539.965648825; 22.9760665 

33 YTT33 528705.879517029; 713817.503986232; 22.26302379 528705.879534535; 713817.504864103; 22.0818816 

34 YTT34 528043.110511926; 712435.484798928; 22.13055794 528043.110515779; 712435.484909801; 21.8191489 

35 YTT35 528419.988315911; 710633.958211361; 21.92731111 528419.98831332; 710633.958237693; 21.4137506 

36 YTT36 529967.93452679; 711032.684607905; 21.95829762 529967.934544663; 711032.684711616; 21.4742604 

37 YTT37 528261.861876; 717210.698619623; 22.63104409 528261.861862215; 717210.698704528; 22.8097254 

38 YTT38 526425.689061496; 718724.127100844; 22.81301857 526425.689028949; 718724.127113802; 23.1712292 

39 YTT39 525076.468986405; 719408.819474891; 22.91308931 525076.468977532; 719408.819551119; 23.3689151 

40 YTT40 526225.935350995; 720282.574474673; 22.98975953 526225.935307325; 720282.574549655; 23.5230335 

41 YTT41 528493.426463876; 718448.80777251; 22.75950388 528493.426333629; 718448.807829748; 23.0647514 

42 YTT42 527884.34385114; 720371.80872944 22.9684489 527884.34360357 720371.80879708; 23.481299 

43 YTT43 523273.527400817; 721154.484610349; 23.12072684 523273.527204784 721154.484704536 23.78354 

44 YTT44 524356.490404865; 722381.886575353; 23.23512038 524356.488142223; 722381.886658528; 24.0128619 

45 YTT45 525882.380108575; 722017.811261183; 23.17551393 525882.380020785; 722017.811315488; 23.8941837 
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Initial Checking of Data and Test on 
Variance Ratio 
Before deformation analysis can be carried 
out, it is important to perform initial 
checking on the input data and test on the 
a-posterior variance factors of both epochs 
(Omogunloye 1988; 1990; 2006 and 
2010). This is to ensure that common 

points, same approximate coordinates and 
same point’s names were used in the two 
campaigns. The a posteriori variance 
factors of both epochs were then tested for 
their compatibility. The null and alternative 
hypotheses used are as proposed by (Setan 
1995; Caspary 1987; Chen et al. 1990; 
Cooper 1987; Singh 1999) 

           
and 

       
 
With  being the a-posteriori variance factors for the first and second campaigns 
respectively. 

The test statistic is      [3.11]  
 
With j and i representing the larger and 
smaller variance factors,  is the Fisher’s 
distribution, α is the chosen significance 
level (typically α = 0.05) and  and  
are the degrees of freedom for i and j 
observation campaigns respectively. The 
above test is accepted if  

at a significance level α. The failure of the 
above test may be caused by incompatible 
weighting between the two campaign 
observations or incorrect weighting scheme 
and any further analysis is stopped at such 
stage. 

 
TREND ANALYSIS    
After the test on the variance ratio, the test 
is accepted, the displacement vector 

(coordinates differences) and its cofactor 
matrix is then computed as follows 

         (      [3.12]  

          [3.13]  

 is the displacement vector,   is the 
cofactor matrix of   , and  are the 
estimated coordinates of all the common 
points in the first and second observation 

epochs respectively (with same datum 
definition),  and  are the cofactor 
matrix of the estimated coordinates  and 

  . 



Application of Least Absolute Sum (Las) Deformation Detection Method  
using Coordinate Differences from Different Observational Campaigns 
 

117 

 

 
Least Absolute Sum (LAS) 
Chen, (1983) has proposed a robust method 
known as Least Absolute Sum (LAS). This 
robust method was developed at the 
University of New Brunswick, Canada. In 
the  LAS method, some points in a reference 
network cannot be accepted as stable .In 
other  words not every point has equal 
importance .Hence in the beginning, the 
weight matrix (W) is accepted as W = I . 

While datum determines, this indicates that 
all points in the network have the same 
importance. Therefore, the solution is 
similar to the Helmert transformation, if 
some points are given unit weight and the 
others a zero weight, that is, W = diag (I,0). 
 
The LAS methods are used when there is no 
previous information about the movement 
of points within the network.  

                [3.14]  
I = identity matrix 
k = number of iterations 
d = displacement vector  
S = S-transformations matrix 

W = weight matrix 
Then displacement values (d) are calculated as: 

d1 = S1 d           [3.15]  
Qd1 = SQdST          [3.16]  
S = I – H (HT WH)-1 HT W       [3.17]  
d2= S2d1         [3.18] 
Qd2= S2 Qd  S2

T        [3.19] 
 
where d1 and Qd1 are the displacement 
vector and its cofactor matrix respectively 
based on the new datum or computational 
base, H is the inner constraints matrix 
constructed depending on the union of the 
datum defects in the two epochs and on the 
number of common points, and W is the 
weight matrix with diagonal value of one 
for datum points and zero elsewhere. 
Matrix S is symmetric only for the 
minimum trace solutions. (i.e., all points in 

the network were defined as datum).The 
group of selected datum points is then 
tested for its stability by using Single Point 
displacement test. 
 
Formation of Matrix H for the Final S-
Transformation 
H is a configuration matrix for the datum 
defect, called inner constraint matrix. 
Basically, the matrix H depends on the type 
of network: 1D, 2D or 3D. For 1D, 2D and 



Journal of Engineering and Applied Scientific Research Volume 8,  

Number 1,  

2016 

 

118 

 

3D networks, H is having maximum 
dimensions of (1m by 1), (2m by 4) and 

(3m by 7) respectively, where m is the 
number of stations. 

  
Equation (3.20) shows the components of the matrix H for a 1D network 
HT   = (1 1 1 1 1………………………….1m)           [3.20]  
 
For 2D surveying networks, the first two 

rows of the matrix H represent the 
translations in the 

x and y directions (tx and ty), the third row 
defines the rotation about the z axis 

(rz) and the last row is the scale of 
the network. Equation (3.2.4.1) 
shows the components of the matrix 
H 

for a  
 

2D network   

                                   
                                                         [3.21] 

Where  and ,  are the 
coordinates of point  which are 

reduced to the centroid or centre of 
gravity of the network, i.e., 
 

      [3.22] 
      [3.23] 

 
With , ,  the approximate coordinates of 
point  and m is the number of common 
points in the network. (Kuang, 1996; 
Ozturk and Serbetci, 1992; Singh and Setan 
, 2001).The first two rows of the inner 
constraint matrix ( ) take care of the 
translations in the x and y directions, while 
the third row defines the rotation about the 
vertical (z) axis and the  last row defines the 
scale of the network. For a trilateration 

network, the last row of  is omitted 
(Caspary 1987; Cooper and Cross 1991; 
Setan 1997; Chen et al. 1990; Singh 
1999).In the first transformation ( ) 
the weight matrix is taken as identity 
(  for all the common points, this 
indicates that all the points in the network 
have the same importance. The weight 
matrix for LAS 
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WK = diag           [3.24] 
The iterative procedure continues until the absolute differences between the successive 
transformed displacements of all the common points i.e       
           [3.25] 
are smaller than a tolerance value  δ ( say 0.001m). It is possible that during the iterations some 
dxi, dyi, dzi may approach zero causing numerical instability because WK   becomes very large. 
There are two ways to solve this problem, either  

 Setting a lower bound value e.g 0.0001m . If dj
(k) is smaller than the lower 

bound value, its weight is set to zero, or replacing  equation  [3.26] as  
 
 
WK = diag          [3.26] 
 
 
 
Where dicks is the  component of the vector dk after kth iteration. 
In this study the Least Absolute Sum minimizes the sum of the lengths of the displacements i.e 

                                    minimum   [3.27]  
In the final iteration, the cofactor matrix of the displacement vector is computed as  

           [3.28] 
 
For 1D networks, there are some differences 
for the calculation of d’ and Qd’. First, the 
displacements d are arranged in increasing 
order. The median is assigned unit weight 1 
and zero weight is assigned to the other 
displacements d. If the total number of d is 

an even number, the two middle (median) 
displacements d are assigned unit weight 1 
and zero weight is assigned to the other 
displacements d ,Then, the new vector of 
displacements d’  and its cofactor matrix 
Qd’ are  

d’=min∑| |⇒ 
Qd’=SQd(S)T 
 
where tz is the mean value of the middle displacements and di is the displacement of point i. 
S=I-H(HTWH)-1HTW           [3.29] 
 

               

d
(k+1)

  - d
(k) 

 

                          

 

1 

 

               (dxi
(k)

+ δ)
2
 + (dyi

(k)
 + δ)

2
)
2
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The stability information of each common point j is then determined through a single point test 
as below (Setan 1995; Setan and Singh 1998) 

    [3.30] 
Where; 

,  = displacement vector and its cofactor matrix respectively for each common 
point j or pooled variance factor. 

, common or pool variance factor     [3.31] 
= a posteriori variance factors of first and second epochs respectively  

,  = degrees of freedom of first and second epochs 
+ , sum of degrees of freedom of first and second epochs 

= significance level (usually chosen as 0.05) 
 
If the above test passes 
(i.e., ) then the point is 
assumed to be stable at a significance level 

α. Otherwise, if the test fails 
(i.e., ) then the point is 
assumed to be deformed (moved). 

 
RESULTS AND DATA ANALYSIS 
Table 4.1a: 2D (X, Y) Network Adjustment Summary 

PARAMETER FIRST EPOCH SECOND EPOCH 

Datum Definitions 2 2 

No of Station 45 45 

No of Observation (n) 189 189 

No of Parameters (m) 90 90 

Degree of Freedom (df=n-m) 99 99 

Convergence Limit 0.00001 0.00001 

A-posteriori Variance (σ) 7.82989325645394e-08 7.96836000130844e-08 

Trace of the Covariance Matrix of 

the Adjusted parameter 

5.183975843652210e-06 5.27565084002794e-06 

Trace of the Adjusted  Observation 

Matrix 

7.04690393080854e-06 7.17152400117759e-06 

 
Table 4.1b: 1D (Height) Network Adjustment Summary  

PARAMETER FIRST EPOCH SECOND EPOCH 

Datum Definitions 2 2 

No of Station 45 45 

No of Observation (n) 107 107 

No of Parameters (m) 45 45 

Degree of Freedom (df=n-m) 62 62 
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A-posteriori Variance (σ) 0.0394472461577893   0.052339412620338 

Trace of the Covariance Matrix of 

the Adjusted parameter 

1.040613555969225 4.018695177022139 

Trace of the Adjusted 

 Observation Matrix 

    1.77512607710052 6.85527356791522 

Deformation Analysis Result 
After the network adjustment, the obtained 
results, especially the adjusted coordinates 
and the cofactor matrices were used for the 
computation of the displacement vector and 
the cofactor matrix of the displacement 
vector. The trend analysis and deformation 
detection were carried out using the LAS 
method. At the degrees of freedom of the 
epoch, the Fisher’s critical value obtained at 
0.05 (95%) significant level is 1.39.  The 
result of the variance ratio test of the two 
epochs shows the test statistic (T) value is 
1.020884677924254. The displacement 

vector (d), cofactor matrix of the 
displacement vector (Qd), the inner 
constraint matrix (H), weight matrix (W), 
S-transformation matrix (S) and other 
parameters of the LAS were all computed. 
The results of the displacement vector (d) 
after adjustment of the network, the first 
iteration displacement vector (d1) and the 
second iteration displacement vector (d2) 
after transformation by Least Absolute Sum 
method the final single point displacement 
(dp) are as shown in Table 4.2 , Table 4.3, 
and  Table 4.4. 
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Table 4.2: Displacement Vector of the 1D Network and Stable and Unstable Point    
Displacement 

 Displacement 

Vector 

Displacement Vector on 

a New Computational 

Base  After S- 

Transformation  

Single Point 

Displacement 

PT<Fi 

(0.05,2,df) 

PT<1.550 

 S/N 

CONTROL 

POINT  

NAME 

 

dZ(m) 

d1 = S1d d1 = S2d1 

PTPz 

PT<1.550 

 dz1 dz2 

1 YTT1 -0.01992 -0.62106 -0.54265 0.811994 Stable  

2 YTT2 -0.07401 -0.59154 -0.51313 0.988851 Stable  

3 YTT3 -0.29582 -0.45274 -0.37433 0.592596 Stable  

4 YTT4 -0.13988 -0.41891 -0.3405 0.648932 Stable  

5 YTT5 0.009162 -0.40332 -0.32491 0.600531 Stable  

6 YTT6 -0.14814 -0.35374 -0.27533 0.409578 Stable  

7 YTT7 -0.10665 -0.29257 -0.21416 0.261906 Stable  

8 YTT8 0.129087 -0.28865 -0.21024 0.306232 Stable  

9 YTT9 0.001505 -0.25564 -0.17723 0.191986 Stable  

10 YTT10 -0.01573 -0.24738 -0.16897 0.189104 Stable  

11 YTT11 0.083069 -0.2214 -0.14299 0.147021 Stable  

12 YTT12 0.253064 -0.21416 -0.13575 0.13268 Stable  

13 YTT13 -0.02088 -0.18804 -0.10963 0.070051 Stable  

14 YTT14 0.162908 -0.18152 -0.10311 0.068049 Stable  

15 YTT15 0.186194 -0.16077 -0.08236 0.044635 Stable 

16 YTT16 0.288568 -0.15556 -0.07715 0.040944 Stable  

17 YTT17 0.310682 -0.12838 -0.04997 0.021027 Stable  

18 YTT18 0.211302 -0.12742 -0.04901 0.021141 Stable  

19 YTT19 -0.08054 -0.12323 -0.04482 0.017767 Stable  

20 YTT20 -0.24624 -0.106 -0.02759 0.012284 Stable  

21 YTT21 -0.34524 -0.10018 -0.02177 0.013732 Stable 

22 YTT22 -0.05327 -0.09834 -0.01993 0.003962 Stable  

23 YTT23 -0.1139 -0.07841 0 0 Stable 

24 YTT24 -0.18507 -0.02444 0.053976 0.079391 Stable  

25 YTT25 0.029093 0.021583 0.099994 0.108622 Stable  

26 YTT26 0.00732 0.055404 0.133815 0.308231 Stable  

27 YTT27 -0.04805 0.071178 0.149588 0.449503 Stable  

28 YTT28 0.436104 0.078691 0.157101 0.183723 Stable  

29 YTT29 0.485314 0.103798 0.182208 0.321928 Stable  

30 YTT30 0.516555 0.14556 0.223971 0.528426 Stable 

31 YTT31 0.347626 0.152772 0.231183 0.514461 Stable  

32 YTT32 0.260276 0.181064 0.259474 0.756523 Stable  
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33 YTT33 -0.18114 0.197744 0.276154 1.883885 Moved 

34 YTT34 -0.31141 0.203178 0.281589 2.125777 Moved  

35 YTT35 -0.51356 0.240122 0.318533 2.76796 Moved  

36 YTT36 -0.48404 0.250707 0.329118 2.839587 Moved 

37 YTT37 0.178681 0.328601 0.407011 2.594411 Moved  

38 YTT38 0.358211 0.348322 0.426733 2.418916 Moved  

39 YTT39 0.455826 0.37781 0.456221 2.445382 Moved  

40 YTT40 0.533274 0.405347 0.483757 2.887476 Moved  

41 YTT41 0.305247 0.409051 0.487462 3.288789 Moved 

42 YTT42 0.51285 0.42577 0.504181 3.274917 Moved  

43 YTT43 0.662813 0.55531 0.63372 4.707015 Moved 

44 YTT44 0.777741 0.611166 0.689577 5.687355 Moved 

45 YTT45 0.71867 0.670238 0.748648 6.843486 Moved  
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Table 4.3: The Displacement Vector Pattern of the Epoch Data using LAS 
 

 
Displacement Vector 

(d) 

Displacement Vector on a New Computational Base  After S- 

Transformation By LAS 

 

Single Point 

Displacement 

(PTp) 

 Displacement Vector 

(d1 = S1d) 

Displacement Vector 

(d2  = S2d1) 

 S/N 

CONTROL 

POINT  

NAME dX(m) dY(m) d1(X) d1(Y) d2(X) d2(Y) 

MAGNITUDE 

√(d2(X)
2
 + 

d2(Y)
2
) PTp (X) PTP(Y) 

1 YTT1 2.77E-06 2.59E-05 7.20E-06 -3.17E-05 4.25E-08 -3.88E-05 3.880E-05 0.000164 0.794432 

2 YTT2 3.14E-06 -0.00011 2.26E-05 5.17E-05 1.54E-05 4.46E-05 4.718E-5 0.186669 1.069351 

3 YTT3 -2.97E-06 0.000105 -2.08E-05 2.24E-05 -2.79E-05 1.52E-05 3.177E-05 0.456962 0.080737 

4 YTT4 1.48E-05 -0.00031 1.11E-05 0.000886 3.96E-06 0.000879 8.79E-04 0.007146 4.246152 

5 YTT5 5.70E-06 0.000124 1.44E-05 -7.86E-05 7.20E-06 -8.58E-05 8.61 E-05 0.024044 4.110841 

6 YTT6 5.83E-06 4.10E-05 2.28E-05 -0.0001 1.57E-05 -0.00011 1.570E-05 0.111269 7.19099 

7 YTT7 -6.33E-06 0.000162 -1.23E-05 3.08E-05 -1.94E-05 2.36E-05 3.053 E-05 0.16821 0.31783 

8 YTT8 2.35E-06 0.000133 2.19E-05 -6.77E-05 1.48E-05 -7.48E-05 7.625 E-05 0.103594 3.158588 

9 YTT9 6.08E-07 3.72E-05 2.54E-05 -8.51E-05 1.83E-05 -9.22E-05 9.399 E-05 0.157434 4.870269 

10 YTT10 -1.09E-07 2.52E-05 3.17E-05 -0.00011 2.46E-05 -0.00011 1.127 E-05 0.293329 7.62088 

11 YTT11 -9.34E-06 8.80E-05 4.08E-05 -8.36E-05 3.37E-05 -9.07E-05 9.675 E-05 0.565388 4.660503 

12 YTT12 -5.55E-07 8.99E-05 3.97E-05 -4.13E-05 3.26E-05 -4.84E-05 5.835 E-05 0.521227 1.323015 

13 YTT13 1.48E-06 1.26E-05 1.12E-05 5.07E-05 4.09E-06 4.35E-05 5.970 E-05 0.010728 0.872408 

14 YTT14 9.13E-06 -0.00053 3.06E-05 0.000906 2.35E-05 0.000899 8.993 E-05 0.300271 4.536646 

15 YTT15 2.09E-06 -6.81E-05 2.92E-05 -6.40E-05 2.21E-05 -7.11E-05 7.4455 E-05 0.236805 2.868241 

16 YTT16 2.56E-06 1.83E-05 3.71E-05 -5.43E-05 2.99E-05 -6.15E-05 6.838 E-05 0.452714 2.130441 

17 YTT17 -4.44E-06 0.00011 5.19E-05 -2.71E-05 4.48E-05 -3.43E-05 5.642 E-05 0.986544 0.649148 

18 YTT18 -1.53E-05 -4.11E-6 4.62E-05 -5.38E-06 3.90E-05 -1.25E-05 2.337 E-05 0.760024 0.086324 

19 YTT19 -1.17E-05 6.57E-05 3.13E-05 -0.00012 2.42E-05 -0.00013 1.3223 E-04 0.297002 9.061258 

20 YTT20 -1.61E-05 0.00012 3.67E-05 -0.00013 2.95E-05 -0.00014 1.43E-04 0.466251 1.066337 

21 YTT21 -1.58E-05 0.000264 4.55E-05 -0.00012 3.84E-05 -0.00013 1.3555 E-04 0.821701 9.233006 
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22 YTT22 -1.38E-05 5.46E-05 4.70E-05 -3.20E-05 3.98E-05 -3.91E-05 5.607 E-05 0.809365 0.851019 

23 YTT23 -1.05E-05 7.04E-05 6.56E-05 -6.19E-05 5.84E-05 -6.91E-05 9.047 E-05 1.865367 2.618017 

24 YTT24 -3.03E-06 0.000137 8.24E-05 -0.00011 7.52E-05 -0.00012 1.4161 E-04 3.129756 7.668884 

25 YTT25 -1.31E-05 5.91E-05 4.91E-05 -1.38E-05 4.20E-05 -2.09E-05 4.691 E-05 0.899676 0.243445 

26 YTT26 -8.72E-06 2.74E-05 8.54E-05 -0.0001 7.82E-05 -0.00011 1.3496 E-04 3.326455 6.232521 

27 YTT27 2.15E-05 -0.00021 0.000121 -9.17E-05 0.000114 -9.89E-05 1.509 E-04 7.224628 5.070011 

28 YTT28 1.46E-06 0.000112 5.63E-05 1.86E-05 4.92E-05 1.15E-05 5.0526 E-05 1.190501 0.07579 

29 YTT29 -4.55E-06 0.000126 6.08E-05 -8.46E-08 5.36E-05 -7.24E-06 5.408 E-05 1.420155 0.028761 

30 YTT30 -2.97E-05 0.000272 5.85E-05 -6.64E-05 5.14E-05 -7.36E-05 8.97714 E-05 1.386828 2.965948 

31 YTT31 -2.36E-05 0.000111 5.09E-05 -4.55E-05 4.38E-05 -5.26E-05 5.661 E-05 0.975635 1.507281 

32 YTT32 -2.77E-05 0.000331 5.21E-05 -6.92E-05 4.49E-05 -7.63E-05 8.853 E-05 1.042566 3.237843 

33 YTT33 1.75E-05 -0.00018 0.000116 0.000711 0.000109 0.000704 1.297 E-04 6.784533 2.442919 

34 YTT34 3.85E-06 0.000319 8.89E-05 -6.24E-05 8.17E-05 -6.96E-05 10.732 E-05 3.947721 2.469739 

35 YTT35 -2.59E-06 0.000591 7.40E-05 -0.00016 6.68E-05 -0.00017 1.833 E-04 2.844835 1.500624 

36 YTT36 1.79E-05 0.000657 0.000109 -9.24E-05 0.000102 -9.96E-05 1.4256 E-04 6.39048 4.741311 

37 YTT37 -1.38E-05 -0.00113 0.000103 -5.31E-05 9.58E-05 -6.02E-05 11.314 E-05 5.015102 1.936708 

38 YTT38 -3.25E-05 0.000115 7.96E-05 -0.0001 7.24E-05 -0.00011 7.240 E-05 2.885911 6.487339 

39 YTT39 -8.87E-06 0.001186 9.72E-05 -2.49E-05 9.00E-05 -3.20E-05 9.5519 E-05 4.402552 0.566615 

40 YTT40 -4.37E-05 0.002614 7.67E-05 -2.66E-05 6.95E-05 -3.38E-05 7.728 E-05 2.663538 0.634454 

41 YTT41 -0.00013 -0.00189 -3.99E-06 -7.27E-05 -1.12E-05 -7.99E-05 8.068 E-05 0.068964 3.45412 

42 YTT42 -0.00025 0.00043 0.000201 -0.00036 0.000194 -0.00037 4.1778 E-05 2.121703 7.28967 

43 YTT43 -0.0002 -0.00133 -9.28E-05 1.78E-05 -1.00E-04 1.06E-05 1.00498 E-04 5.378697 0.062547 

44 YTT44 -0.00226 0.016168 -0.00214 9.41E-06 -0.00215 2.25E-06 2.1500 E-03 2.257432 0.002949 

45 YTT45 -8.78E-05 -0.00057 4.08E-05 -3.18E-05 3.37E-05 -3.90E-05 5.154 E-05 0.621957 0.823719 
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Table 4.4: The Stable and Unstable Point Detection 
 Displacement Vector 

(d2) 

Stable and Unstable Point (Single Point Displacement) 

Using LAS 

Single Point Displacement 

PT=[(dp' * inv(Qdp) * 

dp)/ (2*pv)] 

 

PT<Fi (0.05,2,df) 

PT<1.390 

 S/N 

CONTROL 

POINT  

NAME d2(X) d2(Y) PTp (X) PTP(Y) (X) (Y) 

1 YTT1 4.25E-08 -3.88E-05 0.000164 0.794432 Stable Stable 

2 YTT2 1.54E-05 4.46E-05 0.186669 1.069351 Stable Stable 

3 YTT3 -2.79E-5 1.52E-05 0.456962 0.080737 Stable Stable 

4 YTT4 3.96E-06 0.000879 0.007146 4.246152 Stable Moved 

5 YTT5 7.20E-06 -8.58E-05 0.024044 4.110841 Stable Moved 

6 YTT6 1.57E-05 -0.00011 0.111269 7.19099 Stable Moved 

7 YTT7 -1.94E-5 2.36E-05 0.16821 0.31783 Stable Stable 

8 YTT8 1.48E-05 -7.48E-05 0.103594 3.158588 Stable Moved 

9 YTT9 1.83E-05 -9.22E-05 0.157434 4.870269 Stable Moved 

10 YTT10 2.46E-05 -0.00011 0.293329 7.62088 Stable Moved 

11 YTT11 3.37E-05 -9.07E-05 0.565388 4.660503 Stable Moved 

12 YTT12 3.26E-05 -4.84E-05 0.521227 1.323015 Stable Stable 

13 YTT13 4.09E-06 4.35E-05 0.010728 0.872408 Stable Stable 

14 YTT14 2.35E-05 0.000899 0.300271 4.536646 Stable Moved 

15 YTT15 2.21E-05 -7.11E-05 0.236805 2.868241 Stable Moved 

16 YTT16 2.99E-05 -6.15E-05 0.452714 2.130441 Stable Moved 

17 YTT17 4.48E-05 -3.43E-05 0.986544 0.649148 Stable Stable 

18 YTT18 3.90E-05 -1.25E-05 0.760024 0.086324 Stable Stable 

19 YTT19 2.42E-05 -0.00013 0.297002 9.061258 Stable Moved 

20 YTT20 2.95E-05 -0.00014 0.466251 1.066337 Stable Moved 

21 YTT21 3.84E-05 -0.00013 0.821701 9.233006 Stable Moved 

22 YTT22 3.98E-05 -3.91E-05 0.809365 0.851019 Stable Stable 

23 YTT23 5.84E-05 -6.91E-05 1.865367 2.618017 Moved Moved 

24 YTT24 7.52E-05 -0.00012 3.129756 7.668884 Moved Moved 

25 YTT25 4.20E-05 -2.09E-05 0.899676 0.243445 Stable Stable 

26 YTT26 7.82E-05 -0.00011 3.326455 6.232521 Moved Moved 

27 YTT27 0.000114 -9.89E-05 7.224628 5.070011 Moved Moved 

28 YTT28 4.92E-05 1.15E-05 1.190501 0.07579 Stable Stable 

29 YTT29 5.36E-05 -7.24E-06 1.420155 0.028761 Moved Stable 

30 YTT30 5.14E-05 -7.36E-05 1.386828 2.965948 Stable Moved 

31 YTT31 4.38E-05 -5.26E-05 0.975635 1.507281 Stable Moved 

32 YTT32 4.49E-05 -7.63E-05 1.042566 3.237843 Stable Moved 

33 YTT33 0.00010 0.000704 6.784533 2.442919 Moved Moved 
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34 YTT34 8.17E-05 -6.96E-05 3.947721 2.469739 Moved Moved 

35 YTT35 6.68E-05 -0.00017 2.844835 1.500624 Moved Moved 

36 YTT36 0.000102 -9.96E-05 6.39048 4.741311 Moved Moved 

37 YTT37 9.58E-05 -6.02E-05 5.015102 1.936708 Moved Moved 

38 YTT38 7.24E-05 -0.00011 2.885911 6.487339 Moved Moved 

39 YTT39 9.00E-05 -3.20E-05 4.402552 0.566615 Moved Stable 

40 YTT40 6.95E-05 -3.38E-05 2.663538 0.634454 Moved Stable 

41 YTT41 -1.12E-5 -7.99E-05 0.068964 3.45412 Stable Moved 

42 YTT42 0.000194 -0.00037 2.121703 7.28967 Moved Moved 

43 YTT43 -1.00E-4 1.06E-05 5.378697 0.062547 Moved Stable 

44 YTT44 -0.00215 2.25E-06 2.257432 0.002949 Moved Stable 

45 YTT45 3.37E-05 -3.90E-05 0.621957 0.823719 Stable Stable 

 
ANALYSIS OF   RESULTS 
After the presentation of results, the results 
were analysed as shown in the sub session 
below. 
 
Trend and Deformation Analysis of the 
Displacements Using LAS Method  
After the Least Square Estimation (LSE) of the 
data of the network, the compatibility of the 
two epochs data was tested with the variance 
ratio and compatibility test passed. The 
computed variance ratio of the campaigns is 
lesser than the F-distribution critical value 
for the specified confidence level. The critical 
value for the 0.05 (95%) significance level 
chosen for the Fisher’s distribution (F) is 
1.390. The test statistic (T), which is the ratio 
of the variances (the larger divided by the 
small passed. The test on the variance ratio 
passes at 0.05 significance level (i.e., 
1.02088467792425< 1.390) of the Fisher’s 
critical value, thus indicating the 
compatibility between the two epochs and 

permits further analysis to be carried out for 
deformation detection and analysis. For the 
1D network, the critical value the 0.05(95%) 
significance level chosen for the Fisher’s 
distribution (F) is 1.550 and it also passes the 
compatibility test.  
The trends of movements and deformation 
analysis of the monitoring network was done 
using the adjusted coordinate differences and 
the cofactor matrices from both campaigns 
respectively and by applying the LAS method.  
The 1D and 2D point coordinates X, Y of each 
epoch and their cofactor matrices were 
calculated with two separate network 
adjustments. The Deformation program 
calculated displacement in X axis (dX),Y axis 
(dY) and (dZ). 
 
The LAS determined the final displacement 
vector (dp). The data met the convergence 
criteria after two iterations. The displacement 
values obtained from the differences of the 
adjusted coordinates and their transformation 
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by LAS method shows that virtually all the 
stations have undergone movements’ 
overtime but this however did not result in 
deformation of all the point to a significant 
level. The single point displacement test failed 
for some points thus confirming the existence 
of deformation for some of the group of 
selected control points. The summary of the 

parameters of the deformation detection and 
analysis for 2D and 1D are shown in Table 
4.4 and Table 4.5 respectively. The results is 
emphasized by the plot of  single point 
displacement vectors ,the stable and unstable 
points and the relative absolute error ellipse 
of the 45 stations in the network as 
represented in Figures 4 .1, 4.2, and 4.3. 

 
Table 4.4: Summary of some Key Parameters of the Deformation Detection and Analysis (2D) 

KEY PARAMETERS 

LAS 

No of Iteration 2 

Fisher’s Distribution Critical Value for 95% 

Confidence Level (F) 

1.390 

Calculated Variance Ratio (T=rho1/rho2) 1.02088467792425 

The Compatibility Test Passed (T<F) 1.02088467792425< 1.390) 

Pooled Variance Factors 7.77532847804672e-08 

Combined Degree of Freedom 99 

  
Table 4.5: Summary of some Key Parameters of the Deformation Detection and Analysis (1D) 

KEY PARAMETERS SINGLE POINT DISPLACEMENT 

No of Iteration 2 

Fisher’s Distribution Critical Value for 95% 

Confidence Level (F) 

1.550 

Calculated Variance Ratio (T=rho1/rho2) 1.327053753 

The Compatibility Test Passed (T<F) 1.327053753< 1.550) 

Pooled Variance Factors 0.0958933293890637 

Combined Degree of Freedom 62 

 
Figure 4.1: Displacement Vector Pattern after S-Transformation using LAS 
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Figure 4.2: Displacement Vector Magnitude of the Stations using LAS 
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Figure 4.3: Relative Absolute Error Ellipse of the 45 Stations in the Lagos State Secondary Control Network 
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CONCLUSIONS 
This study has presented successfully the deformation study of a geodetic monitoring network 
using two epochs data. The major focus has been on the identification of stable and unstable 
points in the network. The following conclusions are drawn from the study; 

 The two epoch data were adjusted by the least square adjustment technique and 
passed the compatibility test and are therefore compatible. 

 The displacement vector obtained from the differences of the adjusted 
coordinates shows that virtually all the points have undergone movements 
overtime but this has not however resulted in deformation within the chosen 
significant level of 95% confidence limit. 

 The single point displacement test failed for some stations thus confirming the 
existence of deformation for some points. This shows that the Least Absolute Sum 
(LAS) has the capacity to determine stable and unstable reference points in a 
geodetic network. The determination of deformation status of reference points is 
very useful and can be applied for monitoring deformation trends in Dam Sites, 
Exploration areas, Tunnels and engineering structures. 

 
RECOMMENDATIONS  
Based on the work done in this study, the following points are hereby recommended: 
 Using data from more than two epochs will dramatically enhance the detection of any 

possible change in a deformation detection and analysis study. 
 As a future work, other robust and non-robust methods (e.g., Fredericton Approach, Danish 

Method, Total Least Square, Multi parameter Transformation, and Congruency testing 
methods) could be applied for the deformation detection and analysis. Furthermore 
dynamic model of deformation detection and prediction using the Kalman filtering methods 
for the velocity and acceleration determination of deformable body should be examined.  

 The Survey body in this country (Nigeria), should wakeup to determine how stable her 
platform is, in order to avert future hazards and disaster by carrying out observations on 
our network of controls regularly with advanced Differential Global Positioning System 
(DGPS) with reference to the continuously Operating reference stations (CORS) networks.  
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