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Abstract: Survival analysis examines and models the time it takes for events to occur. The 

prototypical such event is death, from which the name ‘survival analysis’ and much of its 

terminology derives, but the ambit of application of survival analysis is much broader.Frailty 

models is effective in formulating the effects of covariates on potentially censored failure times 

and in the joint modelling of incomplete repeated measures and failure times in longitudinal 

studies. Survival data are often subject to right censoring and to a subsequent loss of 

information about the effect of explanatory variables. Three frailty models are used to analyze 

bivariate time-to-event data. Each approach accommodates right censored lifetime data and 

account for heterogeneity in the study population. A Modified Gamma Frailty [MGF] Model is 

compared with two existing Frailty Models. The newly derived MGF is more robust when 

sample size is more than forty.The MGF model performs better than the existing models in the 

presence of clustering. However the CGF is preferable in the absence of clusters in a given data 

set. 

 
Keywords: Frailty Models, Censorship, Proportional hazard model, Survival Analysis, 

Correlated Gamma Frailty Models, Random effects 

 

INTRODUCTION 

survival modeling examines the relationship between survival and one or more predictors, 

usually termed covariates in the survival-analysis literature.Hazard models have become 

widespread in their use for the analysis of duration time data in many scientific disciplines, 

including biology and medicine (e.g., Cox, 1972; Kalbfleisch and Prentice, 1980), sociology 

(e.g., Petersen, 1995, Vermunt 1996), marketing research (e.g., Vilcassim and Jain, 1991; 

Wedel et al., 1995), and economics (e.g., Kiefer, 1988; Lancaster, 1990). These models 

overcome the problems of accounting for censored observations of duration and time-varying 

explanatory variables, that arise in applying standard regression type models to duration data. 

The basic concept in hazard models is the probability of the occurrence of an event during a 

certain time interval, say t to t + t , given that it has not occurred before t, specified as: 
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The Cox proportional hazards model (Cox, 1972) is commonly used in the analysis of survival 

time data. An often unstated assumption of the proportional hazards model and of traditional 

frailty models (with the exception of those that use the compound Poisson distribution (Aalen, 

1988, Aalen, 1992)) is that all individuals will experience the event of interest. However, in 

some situations a fraction of individuals is not expected to experience the event of interest; that 

is, these individuals are not at risk. The terminology to describe the never-at-risk group varies 

from field to field, but includes ‘long-term survivors’ or ‘cured’ in epidemiology, ‘non-

susceptible’ in toxicology, ‘stayers’ in finite Markov transition models of occupational mobility, 

the ‘non-fecundable’ in fertility models, and ‘non-recidivists’ among convicted criminals.  In 
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epidemiology and medicine, researchers may be interested in analyzing the occurrence of a 

disease. Many individuals may never experience that disease; therefore, there exists a fraction 

in the population that is protected. Cure models are survival models which allow for a cured 

fraction in the study population. These models extend the understanding of time-to-event data 

by allowing for the formulation of more accurate and informative conclusions than previously 

made. These conclusions would otherwise be unobtainable from an analysis that fails to 

account for a cured fraction in the population. If a cured component is not present, the analysis 

reduces to standard approaches of survival analysis.  In cure models, the population is divided 

into two sub-populations so that an individual is either cured with probability 1   , or has a 

proper survival function S(t), with probability  . Here, proper survival function means 

lim t S(t) = 0. Individuals regarded as cured will never experience the event of interest and 

their survival time will be defined as infinity. Therefore, the hazard and survival functions of 

cured individuals are set to zero and one, respectively, for all finite values of t.  
 
Longini and Halloran (1996) have proposed frailty cure models that extend standard frailty 

models. The frailty random variable in the former has point mass at zero with probability 1 - φ 

while heterogeneity among those experiencing the event of interest is modelled via a 

continuous distribution with probability φ. Price and Manatunga (2001) gave an excellent 

introduction to this area and applied leukaemia remission data to different cure, frailty and 

frailty cure models. They found that frailty models are useful in modelling data with a cured 

fraction and that the gamma frailty cure model provides a better fit to their remission data 

compared to the standard cure model. In the next section we describe the existing models and 

a proposed model, then provide an application of the models to an existing data on 

occupational exposure tagged – HEBRON data. 

  

STATISTICAL MODELS 

Cox PH models  

The notation used for Cox PH models (Cox, 1972) with one more subscript to capture 

multiple events is generalized. Let Tik be the total time of the k
th

 event for the i
th

 subject, Cik be 

the censoring time of the k
th

 event for the i
th

 subject. Let Uik be the observation time, that is,  Uik 

= min(Tik;Cik), and ik = I(Tik ≤ Cik) is an indicator of observed k
th

 failure time for subject i. Zik = 

(Z1ik; .  .  . ;Zpik)’ is the covariate vector for the i
th

 subject with respect to the k
th

 event, and Zi = 

(Z’i1;.  .  .  .  ;Z’ iK) denotes the covariate vector for the i
th

 subject, where K is the maximum 

number of events within a subject. β = (β1; .  .  .  . βp) is a p x 1 vector of unknown parameters. 

Denote hk(t|Zi(t)) as the hazard function for the k
th

 event of the i
th

 subject at time t. This is in the 

context of competing risk. In general, the hazard function at time t for a subject is defined as 

the instantaneous probability of failure at time t given the survivorship prior to time t and the 

covariates: 
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(2.1) 

 

Note that Cox PH model for the k
th

 event time Tk is  

hk(t|Zi(t)) = h0,k(t) exp{β'Zi(t)}.         (2.2) 

 

Correlated Gamma Frailty (CGF) Model 

This model was introduced by Yashin and Iachine (1995a,b, 1997, 1999a,b) and applied to 

related lifetimes in many different settings. Examples are found in Pickles et al. (1994), Yashin 
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et al. (1996), Iachine et al. (1998), Iachine (2002), Petersen (1998), Wienke et al. (2000, 2001, 

2002, 2003a,b, 2004, 2005), Zdravkovic et al. (2002, 2004). 

 

Let k0, k1, k2 be some real positive values.  Set 1 = k0 + k1 and 2 = k0 + k2. 

Let Y0, Y1, Y2  be independently gamma distributed random variables with  

Y0 ~ (k0 , 0), Y1 ~ (k1 , 1), Y2 ~ (k2 , 2).    .      .   .       (2.3) 
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The following relation holds 
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Consequently, because of relation 
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To derive the unconditional model, the Laplace transform of gamma distributed random 

variables is applied. Hence,  
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Which results in the representation of the Correlated Gamma Frailty model given as  
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The Proposed Model – Modified Gamma Frailty (MGF) Model 

In order to include heterogeneity in the model, we assume a correlated gamma frailty model.  

Let Zj (j = 1; 2) be the frailties, and Xj (j = 1; 2) vectors of observable covariates of the two 

individuals of a twin pair. Assume that their individual hazards are represented by the 

proportional hazards model.  

 

)2,1(}exp{)()( 0  jXtZt j

T

j 
        (2.15) 

With a baseline hazard function  0(t) describing the risk of respiratory infection as a function of 

age and  denotes the vector of regression parameters. Let the lifetimes of the two twin 

partners be conditionally independent given their frailties Z1 and Z2. Because frailties Zj (j = 1; 
2) are usually unobservable, their correlation coefficient used cannot be estimated directly from 

the empirical data. So a bivariate lifetime model which allows indirect calculation of the 

parameters is needed. The unconditional bivariate survival function of the correlated gamma 

frailty model with observed covariates is given by: 
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Where )X| (tS  denotes the marginal univariate survival function, assumed to be equal for 

both partners in a twin pair. Using a parametric approach we fit a model to the data, such that  
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Where a, b, 2
1  , 2

2 ,  and  are parameters to be estimated. 

The lifetimes are assumed to be independently censored from the right by independent and 

identically distributed pairs of non-negative random variables, which are independent of the 

lifetimes. Thus, observe  

Ti1, Ti2, i1, i2, Xi1,Xi2)          

(2.18) 

 

With ij (i = 1,.  .  .  .n; j = 1; 2) as a binary variable with values 1 (event) and 0 (no event). Let 

the lifetimes follow a distribution (dependent on covariates X1,X2) given by the bivariate survival 

function  

S(t1,t2|X1,X2) = P(Ti1 > t1, Ti2 > t2|X1,X2)      (2.19) 

Starting from this model, we are able to derive the likelihood function given by  
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Partial derivatives of the marginal survival functions are given by  

j

t
t

ttS
ttS

j 




),(
),( 21

21    (j = 1, 2)       (2.21) 

and 

  
21

21
21

),(
),(

2,1 tt

ttS
ttS tt




  .          (2.22) 

 

The model is called the Modified Gamma Frailty (MGF) Model. 

 

NUMERICAL ILLUSTRATION  

We demonstrate here an application of the models to an existing data on occupational 

exposure tagged – HEBRON data. Relationships between occupational exposures and 

morbidity, morbidity and job category were analyzed using proportional hazard analysis, 

allowing for exposure status (never exposed, ever smoked and ever exposed) until the time of 

carrying out the study. The survival-analysis was performed using the SPSS VERSION 15. The 

discrete algorithm was used, since the time-scale (person-years) was discrete. All exposures 

were first analyzed separately, allowing for age and smoking habits. Two-sided p-values < 0.05 

were considered as statistically significant. The relationship between occupational exposures 

and morbidity was also analyzed simultaneously. Using the stepwise option of SPSS, and 

allowing for age and smoking habits, specific exposures were included and excluded until the 

following conditions were met: the significance of the residual Chi-squared was less than 0.25, 

and the significance of the relative risks was less than 0.10. Using the standard error of the 

regression coefficient, the 95% confidence intervals were estimated. The Matlab software and R 

was also applied in analyzing the Correlated Gamma Frailty Model and the Modified Gamma 

Frailty Model. Hazard function and survival functions for the exposure data for large and small 

samples were estimated. 

 

RESULTS 

Tables 4.1 – 4.4 shows the results of analysis of the Hebron data and the goodness of fit table . 

In table 4.1, holding the other covariates constant, an additional year of age increases the yearly 

hazard of exposure of worker by a factor of e
β
 = 1.047389 on average – that is, by 4.7 percent. 

Similarly, each FVC factor increases the hazard by a factor of 1.405088 or 40.5 percent. The 

Body Mass Index (BMI), exposure status (never exposed, exposed and ever smoked), 

Jobcategory and pack years smoked is considered to be insignificant for the Hebron data using 

the Cox Model. The CGF captures the exposure status and Job category to be insignificant for 

the Hebron data while the proposed MGF considers all the variables to be significant for the 

Hebron data. 
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Table 4.1: Regression Coefficients in the Cox Model for the Hebron Study 

Covariate coeff( ) Exp(coeff( ) Std error 

coeff( ) 

Z P 95% C.I 

for coeff( ) 

 

AGE 0.0463 

 

1.047389 

 

0.0217 

 

2.133641 

 

0.0001 

 

1.0023 - 1.0982 

 

BMI - 0.3567 

 

0.699982 

 

0.1911 

 

-1.86656 

 

0.0667* 

 

0.3608 -1.08163 

 

EXPOSURE 

STATUS 

-0.0461 

 

0.954946 

 

0.0219 

 

-2.10502 

 

0.3171* 

 

0.0061 - 1.0118 

 

JOB 

CATEGOR

Y 

-0.0253 

 

0.975017 

 

0.2014 

 

-0.12562 

 

0.6777* 

 

 0.2306 -1.2009 

 

SYST B P - 0.0657 

 

0.936412 

 

0.1847 

 

-0.35571 

 

0.0065 

 

0.0021 - 0.9833 

 

PACK YRS 

SMOKED 

0.0861 

 

1.089915 

 

0.0271 

 

3.177122 

 

0.5169* 

 

 0.023 - 1.1328 

 

FVC 

 

0.3401 

 

1.405088 

 

0.3011 

 

1.129525 

 

0.0085 

 

1.0144 - 1.6449 

 

FEV1 

 

0.0793 

 

1.082529 

 

0.0384 

 

2.065104 

 

0.0001 

 

1.0045 - 1.1429 

 

* Not significant. 

 

Table 4.2: Regression Coefficients in the Correlated Gamma Frailty Model for the Hebron 

Study 

Covariate coeff( ) Exp(coeff( )) Std error 

coeff( ) 

Z P 95% C.I 

for coeff( ) 

 

AGE 0.0470 1.048122 

 

0.0226 

 

2.079646 

 

0.0041 

 

1.0076 -1.2552 

 

BMI - 0.3075 

 

0.735283 

 

0.1141 

 

-2.6950 

 

0.0026 

 

0.0448 - 0.9263 

 

EXPOSURE 

STATUS 

-0.0468 

 

0.954278 

 

0.0536 

 

-1.87313 

 

0.3174* 

 

0.002 - 1.0158 

 

JOB CATEGORY -0.0126 

 

0.987479 

 

0.2034 

 

-0.06195 

 

0.6787 

 

 0.0686 -0.9979 

 

SYST B P - 0.0687 

 

0.933607 

 

0.1713 

 

-0.40105 

 

0.2867 

 

0.0621 - 0.9843 

 

PACK YRS 

SMOKED 

0.0861 

 

1.089915 

 

0.0157 

 

5.484076 

 

0.0015* 

 

0.028 - 1.1428 

 

FVC 

 

0.3521 

 

1.422051 

 

0.3121 

 

1.128164 

 

0.4418 

 

1.0146 - 1.8453 

 

FEV1 

 

- 0.1963 

 

0.821766 

 

0.0815 

 

-2.40859 

 

0.0027 

 

0.0135 - 0.9433 

 

* Not significant. 
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Table 4.3: Regression Coefficients in the Modified Gamma Frailty Model for the Hebron 

Study 

Covariate coeff( ) Exp(coeff( )) Std error 

coeff( ) 

Z P 95% C.I 

for coeff( ) 

 

AGE 0.0437 

 

1.044669 

 

0.0137 

 

3.189781 

 

0.0001 

 

1.0875 - 

1.1552 

 

BMI - 0.2075 

 

0.812613 

 

0.1041 

 

-1.99328 

 

0.0038 

 

0.6448 -0.9263 

 

EXPOSURE 

STATUS 

-0.0456 

 

0.955424 

 

0.0239 

 

-1.90795 

 

0.7321 

 

0.5626  -  

0.9738 

 

JOB 

CATEGORY 

-0.0226 

 

0.977653 

 

0.2058 

 

-0.10982 

 

0.5777 

 

0.6316  -  

0.9929 

 

SYST B P - 0.0737 

 

0.92895 

 

0.1722 

 

-0.42799 

 

0.2869 

 

0.7825 -  

0.9623 

 

PACK YRS 

SMOKED 

0.0868 

 

1.090679 

 

0.0263 

 

3.30038 

 

0.0056 

 

1.0023 - 

1.2328 

 

FVC 

 

0.3511 

 

1.420629 

 

0.1411 

 

2.488306 

 

0.0015 

 

1.0144 - 

1.8449 

 

FEV1 

 

- 0.2856 

 

0.751563 

 

0.1046 

 

-2.7304 

 

0.0027 

 

0.0138 - 

0.8529 

 

* Not significant. 

 

 

Table 4.4:  Prognostic Factors of Occupational Exposure using Cox and frailty Models for 

Hebron Study 

Prognostic factors  Cox regression      Correlated Gamma Frailty   Modified Gamma Frailty

   HR† (CI§ 95%)          HR (CI 95%)           HR (CI 95%)  

Age             1.0474(1.0023 - 1.0982)      1.048122(1.0076 -1.2552)  1.044669(1.0875 - 1.1552) 

BMI             0.7000(0.3608 -1.08163)*   0.735283(0.0448 - 0.9263) 0.812613(0.6448 - 0.9263) 

EXPOSURE STATUS   0.9550(0.0061 - 1.0118)*    0.954278(0.0020 - 1.0158)* 0.955424(0.5626  -  0.9738) 

JOB CATEGORY         0.9750 (0.2306 -1.2009)*    0.987479(0.0686 -0.9979) 0.977653(0.6316  -  0.9929) 

SYST B P             0.9364 (0.0021 - 0.9833)     0.933607(0.0621 - 0.9843) 0.92895(0.7825 -  0.9623) 

PACK YRS SMOKED  1.0899 (0.023 - 1.1328) *    1.089915(0.028 0- 1.1428)* 1.090679(1.0023 - 1.2328) 

FVC             1.4051(1.0144 - 1.6449)      1.42205(1.0146 - 1.8453) 1.420629(1.0144 - 1.8449)  

FEV1              1.0825 (1.0045 - 1.1429) 0.821766(0.0135 - 0.9433) 0.751563(0.0138 - 0.8529) 

AIC#    1357   968    722 

† Hazard Ratio § Confidence interval * Not significant # Akaike Information Criterion 
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Figures 4.1 – 4.3 shows the survival function and hazard function for the Hebron study  
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CONCLUSION 

Interestingly, parameter estimates are quite different depending on distribution of the base-line 

hazard function. The newly introduced Modified Gamma frailty model offers a very elegant 

approach to integrate the concept of clusters into frailty modelling. The survival function is 

explicitly available and of easy form which allows traditional maximum likelihood parameter 

estimation. This is the most important advantage of the suggested model compared to the 

model introduced by Moger and Aalen (2005). The present work contributes to three aspects 

of Frailty models with censored data. First, we present several important extensions of the 

existing models. Secondly, we develop a general asymptotic theory for the Frailty models. 

Thirdly, we provide simple and efficient numerical method to implement the corresponding 

inference procedures. We hope that our work will facilitate further development and 

applications of Frailty models. We have demonstrated that the MGF is a very general and 

powerful approach to the analysis of Frailty models with censored data. This approach can be 

used to study many other problems. Of great interest would be a non-parametric version of the 

correlated compound Poisson frailty model, where the baseline hazard functions are not 

specified. A part of future research is envisaged in this direction. Another aspect that will be of 

interest for further research is the problem of identifiability. The identifiability problem is 

growing with increased censoring, but is reduced by the parametric modelling of the baseline 

hazard.  
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