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ABSTRACT 
This research focused on Arima modeling technique to the forecasting of 
Nigerian Gross Domestic Product between the period of 1980 – 2011. For 
statistical analysis we have used graphical methods to display data 
distributions, Autocorrelation Function (ACF), Partial Autocorrelation 
Functions (PACF), Residuals and forecast, and differencing to check for 
stationarity. The ARIMA (2,1,2) model was proposed for the data from the 
first differences which shows stability and invertibility. Forecasting were 
made for future observations up to fifteen (15) years which shows an 
increasing trend over time, and the Akaike Information Criteria (AIC) and 
the adjusted multiple correlation coefficient (adjusted R-square) provide a 
good summary of the total variability explained by the chosen fitted model.  
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INTRODUCTION  
One of the main objectives of statistics is to forecast future levels of economic activities by 
studying the behaviour of data in the past. In government, short-term and long-term planning 
is carried out on the basis of scientific analysis of past data of the various economic variables 
of the national economy. In business and industry, management would wish to forecasts the 
levels of customers’ demands in order to plan towards commitment of resources towards 
increasing supply.  Making such forecasts entails setting up statistical model showing how 
the economy works and indicating forces which determine demand and supply in the past. In 
all other areas of human endeavour, we use our past experience of previous years to forecast 
what is likely to happen in the future.  
 
However, the analysis of time series involves description, control and production of the 
underlying processes. Time series data when analysed may enhance the understanding of past 
and current pattern of change. This research is based in forecasting, using Box-Jenkins 
method, concentrating first on the theoretical analysis and then applying the method to GDP 
in Nigerian economic data.  
 
Using Arima model as a statistical tool has recently been attracting attentions of many 
research workers as it is expected that this time domain approach will give answers to many 
problems. For instance, Fatoki et al., (2010), Wei et al., (2010), Aboko (2013), Box and 
Jenkins (1976) and Box, Pierce (1970). This is just to mention but few.  
 
In time series analysis, ARIMA models are flexible and widely used. The time series model 
can provide short run forecast for sufficiently large amount of data on the concerned variables 
very precisely. The abbreviation ARIMA (p,d,q) stands for autoregressive integrated moving 
average with three parameters, p, the order of autoregressive, d, the degree of differencing 
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and q, the order of moving average. The ARIMA model, commonly known as Box-Jenkins 
model, is due to Box and Jenkins work for forecasting of a large variety of time series data. 
The underlying assumption is that the time series to be forecast has been generated by a 
stochastic process. 
  
Models  
Models for time series data have many forms and represent different stochastic processes 
when model variations in the level of a process, three broad classes of practical importance 
are the autoregressive (AR) models, integrated (I) and moving average (MA) models. These 
three classes depend linearly on previous data points. Combinations of these ideas produce 
autoregressive moving averages (ARMA) and autoregressive integrated moving averages 
(ARIMA) models   
 
MATERIALS AND METHODS  
The study made use of secondary data collected between 1980 – 2011 from Central Bank of 
Nigeria (CBN). Retrievable from the data and statistics publication of CBN website 
www.cenbank.org.  
 
Model Formulation  
The Box-Jenkins methodology refers to the set of procedures for identifying, fitting and 
checking ARIMA model with time series data. Forecasts follow directly from the form of the 
fitted model Box-Jenkins consists of four steps, such as:   
 
1.       Identification 
2.        Estimation 
3.        Diagnostic checking and 
4.        Forecasting 
 
Box and Jenkins (1976) formalized the ARIMA modeling framework by defining four steps 
to be carried out in the analysis: identification of the model, estimated the coefficients and 
verify the model; identification of the model (i.e. how many terms to be included) is based on 
the autocorrelation function (ACF) and partial auto correlated function (PACF) of the 
differences; log transformed time series (Box and Jenkins, 1976). Estimation of the 
coefficients of the model is carried out by means of the maximum likelihood method. 
 
Verification of the model is done through diagnostic checks of the residual (histogram and 
normal probability plot of residuals, standardized residuals and ACF on PACF of the 
residuals). The performance of ARIMA model was tested through comparisons of predictions 
with observations not used in the fitted model. The accuracy of ARIMA forecast model was 
compared to the average quarterly means over the previous years by examining the variance 
accounted for (δ2) by the model. 
 
The BJ ARIMA method applies only to stationary data series. A stationary time series has a 
mean, variance, and auto-correlation function (ACF) that are essentially constant through 
time. The stationary assumption simplifies the theory underlying (BJ) models and helps to 
ensure that we can get useful estimates of parameters from a moderate number of 
observations. If a time series is stationary, then the mean and variance of any other subset of 
the series will be constant. A series is said to be non-stationary if it does not vary about a 
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constant mean, that is, the series does not exhibit homogenous behaviour of a kind. A model 
that represents homogenous non-stationary behaviour using Box-Jenkins and Reinsel (1994) 
is of the form: 

 
)1()1)(( tt

d aY  
 

Where  
 Y = is the response variable at time t.  
 Φβ = represent the AR proceeds operator.  
 θβ = the MA process operator.  
 at = represent the white noise.  
 β = is the backward shift operator and  
             d           = is the number of time the data series must differenced to induce a 

stationary mean.  
(1)   A pth –order autoregressive model: AR(p), which has the general form  
 Yt  = Φ0 + Φ1Yt-1 + Φ2 Yt-2 ….+ ΦpYt-p + εt     

  (2) 
Where;  

Yt = Response (dependent) variable at time t  
Yt-1, Yt-2,…,Yt-p  = Response variable at time lag t-1, t-2,….t-p respectively.  
Φ0, Φ1, Φ2,....., Φp = coefficient to be estimated  
εt = Error term at time t.  
 

2.   A qth –order moving average model: MA(q), which has the general form.  
   tY εt  - 1  εt-1  - εt - 2 εt-2 - …- q  εt-q     

 (3) 
Yt  = Response (dependent) variable at time t. 
  = constant mean of the process  
θ1, θ2, …., θq    = coefficient to be estimated  
εt = Error term at time t. 
εt-1,εt-2,….,εt-q = Error in previous time periods that are incorporated in 

the response Yt. 
 

(3)   Autoregressive Moving Average mode: ARMA (p,q), which  has the general form 
Yt = Φ0 + Φ1 Yt-1 + Φ2Yt-2 + ….+ ΦqYt-p + εt 

  -   θ1εt-1 – θ2εt-2 … - θq εt-q       (4) 
 
We can use the graph of the sample autocorrelation function (ACF) and the sample partial 
autocorrelation function (PACF) to determine the model which processes can be summarized 
as follows: 
 
Table 1: How to Determine the Model by Using ACF and PACF Patterns 

MODEL ACF PACF 
AR(p) Dies down Cutoff after lag q 
MA(q) Cut off after lag p Dies down 
ARMA(p,q) Dies down Dies down 
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The Steps in the Arima Model- Building 
 
Step 1: Model Identification (Model) Selection and Initial 
Determine whether the series is stationary or not by considering the graph of ACF. If a graph 
of ACF of the series value either cut off fairly quickly or dies down fairly quickly, then the 
time series values should be considered stationary. If a graph of ACF dies down extremely 
slowly, then the time series values should be considered non-stationary. 
 
If the series is not stationary, it can often be converted to a stationary series by differencing. 
That is the original series is replaced by a series of differencing. An ARIMA model is then 
specified for the differenced series. Differencing is done until a plot of the data indicates the 
series caries about a fixed level, and the graph of ACF either cuts off fairly quickly or dies 
down fairly quickly. 
 
The theory of time-series analysis has developed a specific language and a set of linear 
operators. According to equation (2), a highly useful operator in time series theory is the lag 
or backward linear operator (B) defined by BYt = Yt-1. 
 
Model for non-seasonal series are called Autoregressive Integrated Moving Average 
Model, denote by ARIMA (p,d,q). Here p indicates the order of the autoregressive part, d 
indicates the amount of differencing, and q indicates the order of the moving average part, If 
the original series is stationary, d =0 and the ARIMA models reduce to the ARMA models. 
The difference linear operator (Δ), defined by 

ttttt YBBYYYY )1(1          (5) 
 

The stationary series Wt obtained as the dth difference (Δ d) of Yt,  
t

d
t

d
t YBYW )1(           (6) 

 
ARIMA (p,d,q) has the general form 
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Once a stationary series has been obtained; then the identify form of the model to be used by 
using the theory in TABLE 1. 
 
Step 2: Model Estimation 
Here, the selection models are estimated and also computed for the value of AIC and BIC. 
According to the smallest value of AIC and BIC, ARIMA model are secondarily selected and 
it is done with the help of computer package. 
 
Having tentatively selected a model, the next step is the estimate of the parameters of the 
model. In this work the maximum likelihood approach which has been proved to reflect all 
useful information about the parameters contained in the data is used. 
 
Step 3: Model Checking Diagnostic 
In this step, model must be checked for adequacy by considering the properties of the 
residuals whether the residuals from an ARIMA model must have the normal distribution or 
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should be random. An overall check of model adequacy is provided by the Ljuan-Box Q 
statistic. The test statistic Q is 

2
r;-m

1

2

X~)()2( 
 


m

k
m kn

ekrnnQ        (8) 

Where  
rk(e)   -         residual autocorrelation at lag k 
n        =        the number of residuals 
m       =        the number of time lags includes in the test. 
 

If the p -value associated with the Q statistics is small (P-value < α), the model is considered 
inadequate. The analyst should consider a new or modified model and continue the analysis 
until a satisfactory model has been determined. 
 
Moreover, we can check the properties of the residual with the following graph. 

1. We can check about the normality by considering the normal probability plot or the p 
-value from the one-sample Kolmogorov Srnirov Test. 

1. We can check about the randomness of the residuals by considering the graph of ACF 
and PACF of the residuals. The   individual residual autocorrelation should be small 
and generally written ±2/Vn of zero. 

Step 4: Forecasting with the Model 
Forecasting for one period or several periods into the future with the parameters for a 
tentative model, we use E-view package for regression and forecasting. To choose one, two 
or three best approximations we use criteria R2 an Akaike information criteria (AIC), which 
is based on the sum of squared residuals. The best specification is choosing with the lowest 
value of the A1C: the criteria are calculated as; 
 

T
k

T
RSSAIC 2)(log   

 
Where RSS is sum of square residuals and k is the number of estimated parameters. E-views 
calculates both criteria R2 and AIC. Therefore it is easy to use selection criteria. 
 
In seasonal adjustment of GDP it was possible to do additional forecasting using ARIMA 
models. Two methods for forecasting were used: direct model for GDP and indirect model 
for component of GDP by institutional sectors. There forecast can be obtained directly from 
ARIMA (p,d,q) (P,D,Q). Model can be written as: 
 

(1-φ1B – φ2B2 - φpBp)(1-φsBs – φ2sB2s-…-φpsBps)(1-B)d(1-Bs)DYt 

= tQsQs
s

s
s

sq BBBBBB  )...1)(1( 2
2

92
21               (9) 

Where; 
B =      is the backshift operator 
S  = 4 for quarterly data 
 
P and p are orders of autoregressive and seasonal autoregressive part 
q and Q are orders of moving averages and seasonal moving average part 
d and D are orders of difference and seasonal difference 
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For choosing the best forecast we made trails using four econometric criteria: RMSE (Root 
Mean Square Error), MAE (Mean Absolute Error) MAPE (Means Absolute Percent Error) 
and TIC (Theil Inequality Coefficient), These criteria are calculated using (E-view package) 
by using the following formula 
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The first two forecast error statistics depend on the scale of the dependent variable. These 
should be used relative measures to compare forecasts for the same series across different 
models. The smaller the error, the better the forecasting ability of that model according to that 
criteria. The other two statistics are scale invariant. The Theil inequality coefficient always 
lies between zero and one, while zero indicates perfect fit.  
 
RESULTS AND DISCUSSION  
A visual inspection of the time plot in figure 1 reveals that the time series is non-stationary. 
The sample autocorrelation functions for the sample period were computed to check whether 
the GDP series is stationary. As shown in figure 2, the ACF’s are decreasing very slowly, 
indicating that the series is non stationary.  
 
The first differences in figure 3 are stationary in mean and the data fluctuates around the 
constant mean, indicating that the series is stationary. The sample autocorrelation function in 
figure 6 shows that the population ACF (г2) is significantly difference from zero and cults off 
after leg 2. Hence, the model is the second order moving average type or MA(2). Figure 7 
shows the partial autocorrelation (PACF’s) of the first difference from zero. The first 
differenced series is also of the second order autoregressive type or AR(2). The model 
identified as ARIMA (2,1,2). The model estimation, becomes 

221112211   tttttt YYY            (14) 
 
The equation above can be written as  
(1-θ1B-  θ2B2) Yt = (1- θ1B  - θ2B2)εt 
 
(1-0.208939B-0.51852B2)Yt = (1-1.455189B – 0.81831B2) εt 
 
The identification process having led to a tentative formulation for GDP model, we then 
obtain efficient estimate of the parameter μ, Φ1, Φ 2, θ1, θ2, using JMP software packages, 
which employs the maximum likelihood approach involving nonlinear iterative techniques 
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before the parameters are μ = 1032.23, Φ1 = -0.208939, Φ2 = -0.51852 and θ1 = 1.455189, θ2 
= -0.81831.  
 
Twenty three (23) iterations where performed before obtaining these estimate μ, Φ1, Φ2,. 
Figure 9 shows the plots of residuals. It is observed that the randomness of the residue plots 
man be considered as a signed or indication that there is no model lack of fit. It also shows 
that the data (Yt) agrees with the fitted model.  
 
The ARIMA (2,1,2) model is used to make forecast for future observations that the optimal in 
a minimum mean square error sense. The forecast in figure 10 shows that the width of the 
prediction limits increase then the lead time also increase.  
 
Furthermore, for assessing the adequacy of the fitted model, the Akaike information criteria 
(AIC) and the adjusted multiple correlation coefficient. Adjusted R-Square provides a good 
summary of total variability explained by the fitted model equation. The results one 2221.83 
and 0.808 respectively.  
 
CONCLUSION  
The ARIMA (2,1,2) model is adequate for the data. The model is effective and reliable. 
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Table 1: MODEL COMPARISON          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mean   31634.41 
Std                   47260.724 
N                             112  

Figure 1: Original Data Time Series Plot of (GDP) 
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Figure 2: Autocorrelation Function of Original Data Lime Series Plot of (GDP) 

Figure 3: Plot first difference: (1-B)^1 

 

Figure 4: Variogram of Original Data Time Series Plot of (GDP) 
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Figure 6: Autocorrelation Function of the First Differences 

Figure 5: Partial Autocorrelation Function of Original 
Data Time Series Plot (GDP) 

Figure 7: Partial Autocorrelation Function of the First 
Differences 
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Difference: (1-B^4)^1  

Figure 9: Plot of the Residual 

Figure 10: Forecast 

Figure 8: Variogram of the First Differences 
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Table 2: Model Summary 
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