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ABSTRACT

This research focused on Arima modeling technique to the forecasting of
Nigerian Gross Domestic Product between the period of 1980 — 2011. For
statistical analysis we have used graphical methods to display data
distributions, Autocorrelation Function (ACF), Partial Autocorrelation
Functions (PACF), Residuals and forecast, and differencing to check for
stationarity. The ARIMA (2,1,2) model was proposed for the data from the
first differences which shows stability and invertibility. Forecasting were
made for future observations up to fifteen (15) years which shows an
increasing trend over time, and the Akaike Information Criteria (AIC) and
the adjusted multiple correlation coefficient (adjusted R-square) provide a
good summary of the total variability explained by the chosen fitted model.
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INTRODUCTION

One of the main objectives of statistics is to forecast future levels of economic activities by
studying the behaviour of data in the past. In government, short-term and long-term planning
is carried out on the basis of scientific analysis of past data of the various economic variables
of the national economy. In business and industry, management would wish to forecasts the
levels of customers’ demands in order to plan towards commitment of resources towards
increasing supply. Making such forecasts entails setting up statistical model showing how
the economy works and indicating forces which determine demand and supply in the past. In
all other areas of human endeavour, we use our past experience of previous years to forecast
what is likely to happen in the future.

However, the analysis of time series involves description, control and production of the
underlying processes. Time series data when analysed may enhance the understanding of past
and current pattern of change. This research is based in forecasting, using Box-Jenkins
method, concentrating first on the theoretical analysis and then applying the method to GDP
in Nigerian economic data.

Using Arima model as a statistical tool has recently been attracting attentions of many
research workers as it is expected that this time domain approach will give answers to many
problems. For instance, Fatoki et al., (2010), Wei et al., (2010), Aboko (2013), Box and
Jenkins (1976) and Box, Pierce (1970). This is just to mention but few.

In time series analysis, ARIMA models are flexible and widely used. The time series model
can provide short run forecast for sufficiently large amount of data on the concerned variables
very precisely. The abbreviation ARIMA (p,d,q) stands for autoregressive integrated moving
average with three parameters, p, the order of autoregressive, d, the degree of differencing
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and q, the order of moving average. The ARIMA model, commonly known as Box-Jenkins
model, is due to Box and Jenkins work for forecasting of a large variety of time series data.
The underlying assumption is that the time series to be forecast has been generated by a
stochastic process.

Models

Models for time series data have many forms and represent different stochastic processes
when model variations in the level of a process, three broad classes of practical importance
are the autoregressive (AR) models, integrated (I) and moving average (MA) models. These
three classes depend linearly on previous data points. Combinations of these ideas produce
autoregressive moving averages (ARMA) and autoregressive integrated moving averages
(ARIMA) models

MATERIALS AND METHODS

The study made use of secondary data collected between 1980 — 2011 from Central Bank of
Nigeria (CBN). Retrievable from the data and statistics publication of CBN website
www.cenbank.org.

Model Formulation

The Box-Jenkins methodology refers to the set of procedures for identifying, fitting and
checking ARIMA model with time series data. Forecasts follow directly from the form of the
fitted model Box-Jenkins consists of four steps, such as:

1. Identification

2. Estimation

3. Diagnostic checking and
4. Forecasting

Box and Jenkins (1976) formalized the ARIMA modeling framework by defining four steps
to be carried out in the analysis: identification of the model, estimated the coefficients and
verify the model; identification of the model (i.e. how many terms to be included) is based on
the autocorrelation function (ACF) and partial auto correlated function (PACF) of the
differences; log transformed time series (Box and Jenkins, 1976). Estimation of the
coefficients of the model is carried out by means of the maximum likelihood method.

Verification of the model is done through diagnostic checks of the residual (histogram and
normal probability plot of residuals, standardized residuals and ACF on PACF of the
residuals). The performance of ARIMA model was tested through comparisons of predictions
with observations not used in the fitted model. The accuracy of ARIMA forecast model was
compared to the average quarterly means over the previous years by examining the variance
accounted for (5%) by the model.

The BJ ARIMA method applies only to stationary data series. A stationary time series has a
mean, variance, and auto-correlation function (ACF) that are essentially constant through
time. The stationary assumption simplifies the theory underlying (BJ) models and helps to
ensure that we can get useful estimates of parameters from a moderate number of
observations. If a time series is stationary, then the mean and variance of any other subset of
the series will be constant. A series is said to be non-stationary if it does not vary about a
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constant mean, that is, the series does not exhibit homogenous behaviour of a kind. A model
that represents homogenous non-stationary behaviour using Box-Jenkins and Reinsel (1994)
is of the form:

$(B)L— )Y, = 0pa, @
Where

Y = is the response variable at time t.

o = represent the AR proceeds operator.

0p = the MA process operator.

a = represent the white noise.

B = is the backward shift operator and

d = is the number of time the data series must differenced to induce a

stationary mean.
(1) A pth —order autoregressive model: AR(p), which has the general form
Yy =®g+ DY+ Do Yio I (Dth.p + &

)
Where;
Yi = Response (dependent) variable at time t
Y1, Yiz-.., Yrp = Response variable at time lag t-1, t-2,....t-p respectively.
@g, D1, D;......, D, = coefficient to be estimated
&t = Error term at time t.

2. A gth —order moving average model: MA(q), which has the general form.
Y, =u+ & -6 &1 - & '@St-z s &I €t-q

(3)

Yy = Response (dependent) variable at time t.

U = constant mean of the process

01, 02, ...., 0 = coefficient to be estimated

&t = Error term at time t.

EL-1,Et-25 +sElq = Error in previous time periods that are incorporated in

the response Y:.

(3) Autoregressive Moving Average mode: ARMA (p,q), which has the general form
Yt = Qg+ DY+ DY+ ...+ (Dth.p + &
- 91&.1 - 92&.2 e eq St.q (4)

We can use the graph of the sample autocorrelation function (ACF) and the sample partial
autocorrelation function (PACF) to determine the model which processes can be summarized
as follows:

Table 1: How to Determine the Model by Using ACF and PACF Patterns

MODEL ACF PACF
AR(p) Dies down Cutoff after lag g
MA(Q) Cut off after lag p Dies down
ARMA(p,q) Dies down Dies down
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The Steps in the Arima Model- Building

Step 1: Model Identification (Model) Selection and Initial

Determine whether the series is stationary or not by considering the graph of ACF. If a graph
of ACF of the series value either cut off fairly quickly or dies down fairly quickly, then the
time series values should be considered stationary. If a graph of ACF dies down extremely
slowly, then the time series values should be considered non-stationary.

If the series is not stationary, it can often be converted to a stationary series by differencing.
That is the original series is replaced by a series of differencing. An ARIMA model is then
specified for the differenced series. Differencing is done until a plot of the data indicates the
series caries about a fixed level, and the graph of ACF either cuts off fairly quickly or dies
down fairly quickly.

The theory of time-series analysis has developed a specific language and a set of linear
operators. According to equation (2), a highly useful operator in time series theory is the lag
or backward linear operator (B) defined by BY: = Y¢.1.

Model for non-seasonal series are called Autoregressive Integrated Moving Average
Model, denote by ARIMA (p,d,q). Here p indicates the order of the autoregressive part, d
indicates the amount of differencing, and g indicates the order of the moving average part, If
the original series is stationary, d =0 and the ARIMA models reduce to the ARMA models.
The difference linear operator (A), defined by

AYt = Yt—l = Yt - BYt = (1_ B)Yt (5)

The stationary series W, obtained as the dth difference (A “) of Y,
W, ZAdYt = (1_B)dYt (6)

ARIMA (p,d,q) has the general form
¢p (B)(l_ B)dYt =H+ eq (B)gt

(1)
or ¢,(B\W, = u + 6 (B)e,

Once a stationary series has been obtained; then the identify form of the model to be used by

using the theory in TABLE 1.

Step 2: Model Estimation

Here, the selection models are estimated and also computed for the value of AIC and BIC.
According to the smallest value of AIC and BIC, ARIMA model are secondarily selected and
it is done with the help of computer package.

Having tentatively selected a model, the next step is the estimate of the parameters of the
model. In this work the maximum likelihood approach which has been proved to reflect all
useful information about the parameters contained in the data is used.

Step 3: Model Checking Diagnostic

In this step, model must be checked for adequacy by considering the properties of the
residuals whether the residuals from an ARIMA model must have the normal distribution or
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should be random. An overall check of model adequacy is provided by the Ljuan-Box Q
statistic. The test statistic Q is

m 2
Q, =n(n+2)> K& %2 ®)
2 n—Kk ‘
Where
r«(e) - residual autocorrelation at lag k
n = the number of residuals
m = the number of time lags includes in the test.

If the p -value associated with the Q statistics is small (P-value < a), the model is considered
inadequate. The analyst should consider a new or modified model and continue the analysis
until a satisfactory model has been determined.

Moreover, we can check the properties of the residual with the following graph.
1. We can check about the normality by considering the normal probability plot or the p
-value from the one-sample Kolmogorov Srnirov Test.

1. We can check about the randomness of the residuals by considering the graph of ACF
and PACF of the residuals. The individual residual autocorrelation should be small
and generally written £2/Vn of zero.

Step 4: Forecasting with the Model

Forecasting for one period or several periods into the future with the parameters for a
tentative model, we use E-view package for regression and forecasting. To choose one, two
or three best approximations we use criteria R? an Akaike information criteria (AIC), which
is based on the sum of squared residuals. The best specification is choosing with the lowest
value of the A1C: the criteria are calculated as;

AIC=IOQ@+2—k
T T

Where RSS is sum of square residuals and k is the number of estimated parameters. E-views
calculates both criteria R? and AIC. Therefore it is easy to use selection criteria.

In seasonal adjustment of GDP it was possible to do additional forecasting using ARIMA
models. Two methods for forecasting were used: direct model for GDP and indirect model
for component of GDP by institutional sectors. There forecast can be obtained directly from
ARIMA (p,d,q) (P,D,Q). Model can be written as:

(1-91B — 92B? - pBP)(1-0sB° — 92sB*-...-9™B")(1-B)(1-B°)°Y;

= 5+(1—6?18—6?ZBZ—6?(189)(1—6?383—6?ZS — B* — ... = 0gBos ) 11y )
Where;

B = is the backshift operator

S = 4 for quarterly data

P and p are orders of autoregressive and seasonal autoregressive part
g and Q are orders of moving averages and seasonal moving average part
d and D are orders of difference and seasonal difference
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For choosing the best forecast we made trails using four econometric criteria: RMSE (Root
Mean Square Error), MAE (Mean Absolute Error) MAPE (Means Absolute Percent Error)
and TIC (Theil Inequality Coefficient), These criteria are calculated using (E-view package)
by using the following formula

RMSE = \/% Tf(\(t ~Y,)? (10)

t=T=1
1 T=h
MAE == >/Y, - Y,/ 11
h t=T=1
1 T=h
MAPE == >[(Y, - Y)/Y/ (12)
h t=T=1
T=h )
Z(Yt - Yt)
TIC = il (13)
1 T=h 1 T=h
\/ Ytz R i ytz
h t=T=1 h t=T=1

The first two forecast error statistics depend on the scale of the dependent variable. These
should be used relative measures to compare forecasts for the same series across different
models. The smaller the error, the better the forecasting ability of that model according to that
criteria. The other two statistics are scale invariant. The Theil inequality coefficient always
lies between zero and one, while zero indicates perfect fit.

RESULTS AND DISCUSSION

A visual inspection of the time plot in figure 1 reveals that the time series is non-stationary.
The sample autocorrelation functions for the sample period were computed to check whether
the GDP series is stationary. As shown in figure 2, the ACF’s are decreasing very slowly,
indicating that the series is non stationary.

The first differences in figure 3 are stationary in mean and the data fluctuates around the
constant mean, indicating that the series is stationary. The sample autocorrelation function in
figure 6 shows that the population ACF (r?) is significantly difference from zero and cults off
after leg 2. Hence, the model is the second order moving average type or MA(2). Figure 7
shows the partial autocorrelation (PACF’s) of the first difference from zero. The first
differenced series is also of the second order autoregressive type or AR(2). The model
identified as ARIMA (2,1,2). The model estimation, becomes
Y+ +0,Y, ,=6+6, +0, 6, + 06, (14)

The equation above can be written as
(1-01B- 0,B?) Y= (1- 0,B - 0,B?)e,

(1-0.208939B-0.51852B%)Y, = (1-1.455189B — 0.81831B?) ¢,
The identification process having led to a tentative formulation for GDP model, we then

obtain efficient estimate of the parameter p, ®;, ® », 01, 0, using JMP software packages,
which employs the maximum likelihood approach involving nonlinear iterative techniques

84



Journal of Physical Science and Innovation Volume 5, No. 2, 2013

before the parameters are u = 1032.23, ®; = -0.208939, ®, = -0.51852 and 6, = 1.455189, 6,
=-0.81831.

Twenty three (23) iterations where performed before obtaining these estimate p, @1, ®,,.
Figure 9 shows the plots of residuals. It is observed that the randomness of the residue plots
man be considered as a signed or indication that there is no model lack of fit. It also shows
that the data (') agrees with the fitted model.

The ARIMA (2,1,2) model is used to make forecast for future observations that the optimal in
a minimum mean square error sense. The forecast in figure 10 shows that the width of the
prediction limits increase then the lead time also increase.

Furthermore, for assessing the adequacy of the fitted model, the Akaike information criteria
(AIC) and the adjusted multiple correlation coefficient. Adjusted R-Square provides a good
summary of total variability explained by the fitted model equation. The results one 2221.83
and 0.808 respectively.

CONCLUSION
The ARIMA (2,1,2) model is adequate for the data. The model is effective and reliable.
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Model Comparison

Model DF Variance "~ AIC SBC RSquare -2LogLH
AR(1) 110 1.57411e9 2375.8189 2381.2559 0.308 2370.2551
MA(1) 110 1.93306e9 2398.8255 2404.2625 0.15 2392.8982
I(1) 110 1.85463¢9 2370.8458 2373.5553 0.181 2890.5991
ARI(1, 1) 109 1.24007¢9 2328.1659 2333.585 0.458 2322.5738
IMA(1, 1) 109 909239126 2293.7212 2299.1402 0.602 2288.9871
ARIMA(L, 1, 1) 108 832888865 2285.9856 2294.1142 0.639 2278.5699
ARI(2, 1) 108 1.20947¢9 2327.3926 2335.5212 0.476 2318.8487
IMA(1, 2) 108 521558418 2234.0288 22421574 0.774 2229.6133
ARIMA(Z, 1, 2) 106 450763496 2221.8363 2235.384 0.808 2211.8855
1(2) 109 5.78187e9 2474.5793 24772798 -1.54 2988.6276
ARI(1, 2) 108 2.47249¢9 2383.1342 .2388.5351 -0.08 2377.9586
IMA(2, 1) 108 1.88111e% 2353.0642 2358.4651 0.173 2351.7553
ARIMA(Z, 2,2) 105 1.24315¢9 2313.5007 - 2327.0031 0.47 2304.4878
ARI(2,2) - 107 2.45918¢9 2384.5403 2392.6417 -0.06 2376.3264
IMA(2, 2) 107 2.09316e9 2366.8137 2374.9152 0.098 2359.4174
AR(2) 109 1.58855¢9 2378.8418 2386.9973 0.308 2370.2551
MA(2) 109 1.03928¢9 2331.3214 2339.4769 0.545 2326.2988
Model Comparison

Model DF Variance AIC SBC RSquare -2LoglL.H
ARIMA(L, 1,2) 107 526342905 2237.0424 2247.8806 0.774 2229.6021
ARIMA(2, 1, 1) 107 791883900 2282.3817 2293.2198 0.66 2272.2881
ARIMA(L, 2, 1) 107 1.25033e9 2310.1337 2318.2351 0.455 2307.1434
ARIMA(1,2, 1) 107 © 1.25033¢9 2310.1337 2318.2351 0.455 2307.1434
ARIMA(2,2, 1) 106 1.21703e9 2309.1651 2319.967 0.475 2303.5499
ARIMA(1, 2,2) 106 1.2709e+9 2313.9292 2324.7312 0.452 2307.7049
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Figure 1: Original Data Time Series Plot of (GDP)
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Figure 4: Variogram of Original Data Time Series Plot of (GDP)
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Lag Variogram

Figure 8: Variogram of the First Differences
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Table 2: Model Summary

Model DF Variance AIC SBC RSquare -2LogLH
ARIMA(2, 1, 2) 106 450763496 2221.8363 2235.384 0.808 2211.8855
Model: ARIMA(2, 1, 2)

Model Summary :
DF 106

Sum of Squared Errors 4.77809e10

Variance Estimate 450763496

Standard Deviation 21231.1916

Akaike's 'A" Information Criterion 2221.83632

Schwarz's Bayesian Criterion 2235.38397

RSquare 0.80798812

RSquare Adj 0.80074239

-2LogLikelihood 2211.88552

Stable Yes

Tnvertible Yes

Parameter Estimates

Term Lag Estimate Std Error t Ratio Prob>|t|
AR1 1 -0.208939 0.0990887 -2.11 0.0373
AR2 2 -0.5185254 0.1025485 -5.06 <.0001
MAL1 1 1.45518952 0.0710789 20.47 <.0001
MA2 2 -0.8183135 0.0470977 -17.37 <.0001
Intercept 0 1234.21764 415.04184 297 0.0036
Constant Estimate 2132.06709
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