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ABSTRACT 
This paper proposes and demonstrates a new integration of the theory of 
buttery effect of chaos theory in relation to initial conditions. It is very unusual 
for a mathematical idea to disseminate into the society at large. An interesting 
example is chaos theory, popularized by Lorenz’s butterfly effect: “does the flap 
of a butterfly’s wings in Brazil set off a tornado in Texas?” A tiny cause can 
generate big consequences. We have suggested an analytic approach to 
Lorentz system and with the use of MACTCONT, toolboxes in MATLAB, we 
have computed the system using different initial conditions and tracked the 
behaviuor of the system, eventually ending up by showing impossibility of 
weather forecasting being ineffective after one week and become chaotic. 

 
Keywords: Homtopy Continuation Method, Butterfly Effect, MATCONT. 
 
INTRODUCTION 
In common usage, chaos simply means a state of disorder [7].  However, in the theory of chaos, 
the term is defined more precisely. Although there is no universally accepted mathematical 
definition of chaos, a commonly used definition says that, for a dynamical system to be 
classified as chaotic, it must have the following properties, [5]. 

 Be sensitive to initial conditions; 
 Be topologically mixing; and 
 Have denseperiodic Orbits. 

 
Sensitivity to initial conditions means that each point in a chaotic system is arbitrarily closely 
approximated by other points with significantly different future paths, or trajectories. Thus, an 
arbitrarily small change, or perturbation, of the current trajectory may lead to significantly 
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different future behavior. It has been shown that in some cases the last two properties in the 
above actually imply sensitivity to initial conditions,[3] and [1], and if attention is restricted to 
intervals, the second property implies the other two[12]. (An alternative, and in general weaker, 
definition of chaos uses only the first two properties in the above list)[8]. It is interesting that the 
most practically significant property, that of sensitivity to initial conditions, is redundant in the 
definition, being implied by two (or for intervals, one) purely topological properties, which are 
therefore of greater interest to mathematicians. The Lorenz system of differential equations 
arose from the work of a meteorologist/mathematician Edward N. Lorenz. As he was computing 
numerical solutions of the system of three differential equations that he came up with, he 
noticed that initial conditions with small differential eventually produced vastly different 
solutions. What he had observed was sensitivity to initial condition, a characteristic of chaos. 
His observation led him to further study of the system, and since that time, about 1963, the 
Lorenz system became one of the widely studied systems of ordinary differential equation 
(ODE) because of its wide range of behaviour. 
 
The system of differential equation Lorenz used was  
 

x x y

y rx y xz

z z xy


   


    


   



         (1) 

 
where , r, and  are positive parameters which denotes physical characteristics of air flow. 
The variable x corresponds to the amplitude of convective currents in the air cells, y to the 
falling currents and z, to the deviation of the temperature from the normal temperature in the 
cell. Even though a definition of chaos has not been agreed upon by mathematician, two 
properties that are generally agreed to characterize it are sensitivity to initial conditions and 
the presence of period – doubling cycles leading to chaos. The Lorenz system exhibits both of 
these characteristic. We already mentioned the first and the second simply the presence of limit 
cycles which repeatedly double their period as r is varied in one direction unit the orbits begin 
to wander chaotically. We will explore these dynamics and other behaviour of the Lorenz 
system.  
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RELATED WORK ON CHAOTIC SYSTEMS 
Reference [2] published “The Fractal Geometry of Nature” which became a classical of chaos 
theory. Biological systems such as the branching of the circulatory and bronchial system 
proved to fit a fractal model. Reference [6] published Chaos Making a New Science, which 
became a best-seller and introduced the general principal of chaos theory as well as its history 
to the broad public, through Gleick history under emphasized important sovient contribution. 
Initially the domain of a few, isolated individuals, chaos theory progressively emerged as a 
trans-disciplinary and institutional discipline, mainly under the name of non-linear system 
analysis. Alluding to Thomas Kuhn’s concept of paradigm shift exposed in the structure of 
scientific revolutions (1962) many “chaologists” (as some described themselves) claimed that 
this new theory was an example of such a shift, a thesis upheld by Gleick. The availability of 
cheaper, more powerful computers broaden the applicability of chaos theory, currently chaos 
theory continues to be a very active area of research involving many different disciplines 
(mathematics, topology, physics, social system, population modeling, biology, meteorology, 
astrophysics, information theory, computation neuroscience)  
 
METHODS     
This section discusses the methodology which involves first order Differential equation such as 
separable differential equation, homogeneous equations, linear equation, Bernoulli equations 
and exact differential equation. We also include the idea of algebraic topology, the homotopy 
principle coupled with numerical analysis method, numerical continuation in achieving our 
result.  
Homotopy  
If f(x) is the system of nonlinear equations to be solved and g(x) is a second simpler system of 
the same number of equations, the homotopy function might be constructed as 
 

H(x, t) = t f(x) + (1 – t) g (x) = 0   0  t  1, x Rn 
 
where t is a scalar homotopy parameter which is gradually varied from 0 to 1 as the path is 
tracked from starting point to a solution. 
 
Dynamical System  
Consider the dynamical system 
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x 10x 10y

y rx y xz

8
z z xy

3


   


    


  


. 

 
This is a dynamical system and for any dynamical system we get a group of the character of the 
vector field. To simulate this problem or to do this we find the equilibrium and locally linearize 
around the equilibrium point and then we try to understand the behavior of around the 
equilibrium points. First we locate the equilibrium, obviously, (0, 0, 0) is one of them. But this is 
not enough for we have other parameters. Let us call the equilibrium points as. 
 

 A 0,0,0  
 B b(r 1), b(r 1), r 1     

 C b(r 1), b(r 1), r 1       
 
 Note that if r < 1, points B and C will be imaginary and the position of the equilibrium is on 
the real plane. Therefore the two mentioned points do not exist for that range of r. 
Now for the stability of the equilibrium points, which are obtained from the Jacobean matrix. 

 = 10,   = 8

3
, r = 2       

f1(x, y, z)    = −10(x−y)      
f2(x ,y, z)    = −xz – y + rx 

 f3(x, y, z)   = xy −8

3
z        

0

J z r 1 x

y x b

  
 

    
 
  

 

Here we keep r as the variable parameter at (0,0,0) implies 

8
3

10 10 0

r 1 0

0 0 

 
 


 
  

 (2) 

 
Now we find the eigen value of (2) in terms of r, we obtain three eigen values,  
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b 11

2


                   (3) 

 
Equation (3) is real for some values of r and for some it will not be real. Find for which value it 
will be stable. For r = 1, for instance the values will be,  = 0,  = −11 
 
To further obtain the stability of the remaining to equilibrium point we use the Jacobian of 
system (1) above. 
For r = 2 

10 10 0

8
J 1 2 1

3

8 8 8

3 3 3

 
 
 
 

     
 
 
 
 

 

 
The eigen values for this Jacobian is in terms of characters are one real negative(−ve) and two 
complex – conjugate, with negative( –ve) real part. The two equilibrium points are also called 
attractors just as a limit cycle is an attractor. The origin of the Lorenz equation will be the 
equilibrium point. We have seen earlier about the behavior when r = 1. After that, as the values 
of the parameter r is change through the value of r = 1, we have that particular point becomes 
unstable while two other equilibrium appears and they become stable. These are the 
equilibrium points B and C above. As r is changed further, we see that the real parts of the 
eigen values of those two equilibrium points having complex–conjugates (that is, they have 
inward spiraling orbits), while the real part will slowly go to zero.  
 
DISCUSSION AND CONCLUSION 

“The trouble with weather forecasting is that it’s right too often for us to ignore 
it and wrong too often for us to rely on it” 

      -Patrick Young    
 
Weather prediction is an extremely difficult problem. Meteorologists can predict the weather 
for short periods of time, a couple days at most, but beyond that predictions are generally 
poor.Why are weather predictions still so inaccurate?  The root of the problem is something 



On Lorentzian System of Differential Equation 

70 
 

known as the “Butterfly Effect”. Unfortunately, the Butterfly effect has been grossly 
misrepresented by modern culture. Another take on the butterfly effect is rooted in the 
following saying: “Does the flab of a Butterfly’s wings in Brazil cause a hurricane in Texas?”  
 
This Butterfly effect actually originated from a talk given in 1972 by Edward Lorenz, an MIT 
metreologist, see Fig. 1 

 
 
 
 
 
 
    
 
 
 
 
 
 
 

Fig. 1 
  
However, in the first sentence of the talk, Lorenz admitted the ridiculous nature of the title. The 
idea that the Butterfly effect could cause the hurricane is a bit absurd. That; 

Thiscould cause               This  
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Is a bit absurd 
 
The root of Lorenz’s idea was a central concept in Chaos Theory. That theory is called 
“Sensitivity to initial conditions”. If we deviate a little and look at an example of this idea as a 
system called the “Double Pendulum”. Sensitivity on initial conditions means that starting the 
pendulum in a slightly different position would cause drastically different behavior. The double 
pendulum is also an example of something called a “Dynamical System”. Think of a dynamical 
system as simply a point in space, that point moves around as time passes by. For the double 
pendulum, this point would be the position of the pendulum tip. Sometimes, a dynamical 
system moves to and stays near a certain point is called an ‘Attractor’. See Fig. 2 below 
 
 
 
 
 
 

 
 
 
 

Fig. 2: An Attractor 
 
 
Attractors can also be sets of points. For instance, a circle could be an attractor.  
 
Now, going back to our main subject, the Lorenz Equation, as mentioned earlier, Edward 
Lorenz developed a set of equations to model a simplified weather system 

dx
(y x)

dt

dy
x( z) y

dt

dz
xy z

dt


   




   



  


            (3.A) 
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Basically, the equations model the flow of fluid (particularly air) from a hot to a cold area. This 
is called a convective fluid flow. See Fig. 3 below 
 

   
 
 

 
  
 
 
 

 
Fig. 3:  Convective Fluid Flow 

 
Convective flow in atmosphere can form super cool looking clouds, known as “roll clouds”. 
This rolls from when air is heated from below and cooled from above. Remembering, of course, 
famous singings of geographers, that: the higher you go, the cooler it becomes. See Fig. 4 below. 
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Fig. 4.  Result of Convection 
 
 
The final physical effect is displayed in the following figures. 
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Fig. 5 Physical Results of Convection 
The solution to the set of differential equations to system (III.A) is a dynamical system. We 
employ the use of software called Matcont, a collection of toolboxes in MATLAB to plot the 
solutions with varying initial conditions. The result obtained through Matcont with the initial 
conditions X (0) = (1, – 1, 1), we get what we see in Fig. 6 below.  The plot is sometimes called 
the “Lorenz Butterfly” due to its shape. 
 
   
 
 
 
 
 
 
 

Fig. 6  Lorenz Butterfly 
 
The plot seems to spiral around two distinct points, the attractors, one from the left and one 
from the right. The points are attractors, but of  different sort than normal. They are also 
known as “strange attractors” Basically, this means that we cannot predict when a solution will 
jump from one attractor to another. We scaled the coordinate of the initial conditions by 10%, 
from 1 to 1.1, the solution may appear to be similar to the original, when the initial condition 
are X(0) = (1,  – 1, 1), it is actually quite different, see Fig. 7 below. This becomes clear if we 
graph the distance between the two solutions, using the l2-norm or the Euclidean distance 
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2 2 2

E 1 1 2 2 n n

n
2

i i

i 1

d (X,Y) (x y ) (x y ) (x y )

                = (x y )


      



 

 
It is a generalized form of the Pythagorean Theorem. 
 
 
 
 
 
  
 
 
 
 

Fig. 7: Smaller Disturbance 
If we think of 10% as being small, let us try a much smaller disturbance of the initial condition, 
1%, so we have the Lorenz solution with initial conditions X(0) = (1.01, –1.01,1.01). Once again 
the graph looks similar to  the previous two, but in fact quite  different. 
 
 
 
 
  
 
 
 
 
 
 

Fig. 8: Much Smaller Disturbances 
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If we further reduce the disturbance, all the four solutions plotted simultaneously, we see small 
differences between them as seen in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9:  All Disturbances Simultaneously 
 
CONCLUSION  
In conclusion, it is this sort of sensitivity on initial conditions that makes the weather difficult to 
predict. The simulation of Lorenz system is actually predictable accurately around 5 – 10 days. 
Predictions of weather longer than that cannot be accurate. If we manage to develop a better 
weather model, our predictions will be accurate for longer periods of time. No matter how 
good our model is, though, there will eventually be a point where it falls apart. Of course, the 
weather is far more than this simple set of Lorenz system given in (III.A). 
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