DAILY CHINESE YUAN – NIGERIAN NAIRA EXCHANGE RATES SARIMA MODELLING

Ette Harrison Etuk

Department of Mathematics, Rivers State University of Science and Technology, Port Harcourt Email: ettetuk@yahoo.com

ABSTRACT

A 179-point realization of daily exchange rates of the Chinese Yuan and the Nigerian Naira spanning from 18th October 2015 and 13th April 2016 is analyzed by seasonal autoregressive integrated moving average (SARIMA) methods. The time plot shows an initial downward trend up to the middle of December 2015 and then an upward trend from then onwards. This means that prior to the middle of December 2015 the Naira was relatively appreciating before it started depreciating relatively. The series is adjudged as non-stationary by the Augmented Dickey Fuller Test. A seven-point (i.e. seasonal) differencing of the series yields a series which, though adjudged stationary, still exhibits seasonality and therefore could not said to be stationary. A further (non-seasonal) differencing is done to achieve stationarity. The autocorrelation structure of the resultant series suggests the possibility of some SARIMA models. These include a SARIMA $(0,1,1)x(0,1,1)_{12}$ and a SARIMA(0,1,0)x(0,1,1)₁₂. Comparison on the basis of the information criteria AIC, Schwarz criterion and Hannan-Quinn criterion shows that the former model is the superior. It is as well observed that its residuals are white noise. Forecasting and simulation of these rates may be done on its basis.

Keywords. Chinese Yuan, Nigerian Naira, SARIMA Modelling

INTRODUCTION

Of recent the Nigerian President Muhammadu Buhari paid a visit to China and it is being conjectured that the purpose of his visit was to discuss the possibility of a currency swap between the Chinese Yuan (CNY) and the Nigerian Naira (NGN). If this is true then it would mean that transactions of all kinds between the two governments will be in terms of the

exchange rates of the two currencies. This implies that demand for US dollars through Nigerian banks for trade transactions between both countries shall reduce. Preference shall be given to the Yuan (Clement, 2016). Nigeria can do business with China using the Yuan and China can do business with Nigeria using the Naira. Nigerians hope that this will augur well for their economy which is currently experiencing a downturn. Whatever trade transactions between China and Nigeria will affect and be affected by the exchange rates between CNY and NGN.

This work is therefore aimed at modelling the daily exchange rates of the two currencies. Because of its importance, exchange rates modelling has engaged the attention of many researchers a few of whom are Erdemliogu *et al.* (2012), Chong *et al.* (2002) and Ari and Unal (2016). These authors focussed on volatility modelling by members of the Garch family. Some others are Li *et al.* (2007) who applied regularized least squares regression to model the exchange rates of the British pound (GPB) and United States Dollar (USD). Martinez and Gaw (2013) who modelled the Philippine-USD exchange rates as an ARIMA (1,1, 2) and Urrutia *et al.* (2015) who fitted an ARIMA(0,1,0) to quarterly exchange rates of the Philippine relative to the USD. Moreover, Appiah and Adetunde (2011) proposed the use of an ARIMA (1,1,1) in forecasting Ghana cedi / USD exchange rates and Osarumwese and Waziri (2013) used an ARIMA(0,1,1) to model Nigerian Naira (NGN) and USD exchange rates. In this work we shall use the seasonal autoregressive integrated moving average (SARIMA) approach for the modelling. Application of the SARIMA approach on foreign exchange rates has had a measure of success in recent times. Etuk (2013, 2014) and Etuk and Bazinzi (2015) have successfully applied SARIMA modelling on foreign exchange rates.

MATERIALS AND METHODS

Data

The data analyzed herein are 179 Chinese Yuan (CNY)/Nigerian Naira (NGN) daily exchange rates from 18th October 2015 to 13th April, 2016. For out-of-sample comparison of data with forecasts a further set of 8 values from 14th April to 21st April, 2016 are used. The website from which data were read is <u>www.exchangerates.org.uk/CNY-NGN-exchange-rate-history.html</u> accessed on the 14th April, 2016 and 24th June 2016 for the out-of-sample data. They are to be interpreted as the amount of NGN in one CNY.

Sarima Modelling

Box and Jenkins (1976) defined a SARIMA (p,d,q)x(P,D,Q)_s model as $A(L) \Phi(L^{s}) \nabla_{s}^{D} \nabla^{d} X_{t} = B(L) \Theta(L^{s}) \varepsilon_{t}$ (1)

where X_t is the value of the time series at time t, A(L) the autoregressive (AR) operator which is a polynomial of degree p in L, B(L) the moving average (MA) operator which is a polynomial of degree q in L, $\Phi(L)$ is the seasonal AR operator which is a polynomial of degree P in L, $\Theta(L)$ is the seasonal MA operator which is a polynomial of degree Q in L, L is the backshift operator defined by $L^kX_t = X_{t-k}$. ∇ is the non-seasonal differencing operator, ∇_s is the seasonal differencing operator , s is the seasonality period and $\{\varepsilon_t\}$ is a white noise process. The parameter s may be suggestive directly from knowledge of the seasonal nature of the series. It is often enough to select the differencing orders d and D such that they sum up to at most 2 for the data to be stationary. The augmented Dickey Fuller (ADF) Test shall be used to test for data stationarity. The AR orders p and P are usually estimated by the non-seasonal and the seasonal cut-off lags for the partial autocorrelation functions (PACF) while their MA counter parts q and Q are estimated by the non-seasonal and the seasonal cut-off lags of the autocorrelation function (ACF) respectively.

Model estimation shall be by the least squares procedure. Model selection shall be by the Akaike Information criterion (AIC) (Akaike, 1974), Schwarz criterion (SC) (Schwarz, 1978) and Hannan-Quinn criterion (HQ) (Hannan and Quinn, 1979). Diagnostic checking shall be done by examining the time plot of the model residuals. Granted model adequacy the residuals should be uncorrelated.

RESULTS AND DISCUSSION

The time plot of the series shows an initial overall downward trend up to the third week of December 2015 followed by an overall upward trend. This means that prior to the third week of December 2015 the Naira was relatively appreciating and then depreciating up to April 2016. This series cannot be stationary since its mean level is clearly not constant. This suspicion is upheld by the ADF test as follows: the test statistic value is –1.69 and the 1%, 5% and the 10% critical values are respectively –3.47, –2.88 and –2.58. This calls for a differencing of the rates. Initial a seven-day differencing is done under the hypothesis of a seasonal component of weekly periodicity. The time plot of the differences in Figure 2 reveals a slight positive trend.

The ADF test with a statistic value of -3.68 certifies the differences as stationary. However the correlogram of Figure 3 seems to contradict a stationarity hypothesis.

A further but non-seasonal differencing yields a series with an overall horizontal trend (See Figure 4). The correlogram of Figure 5 shows that his series may be considered as stationary. Suggestive by the autocorrelation structure shown by the ACF and the PACF are some SARIMA models which include a SARIMA((0,1,1)x((0,1,1))⁷ and a SARIMA((0,1,0)x((0,1,1))⁷. These models have been estimated and the estimation summaries are displayed in Tables 1 and 2 respectively. Clearly the latter model is the less adequate model as evident from the values of the information criteria: AIC, SC and HQ, and even the R².

That means that the moving average model

 $X_{t} = \varepsilon_{t} - 0.2754\varepsilon_{t-t} - 0.9488\varepsilon_{t-7} + 0.2620\varepsilon_{t-8}$ (2) (±0.0744) (±0.0170) (±0.0720)

where $\{X_t\}$ is the difference of the seasonal difference series, is the better model proposed for the forecasting and simulation of the exchange rates. Its adequacy is not in doubt. Its residuals are uncorrelated (See Figure 6). Besides out-of-sample forecasts and observations agree very closely as evident from Table 3 results.

CONCLUSION

It may be concluded that model (2) which is a SARIMA((0,1,1)x((0,1,1))⁷ model may be used to forecast the daily CNY/NGN exchange rate series. Its adequacy has been demonstrated by some residual analysis as evident in Figure 6. A close agreement is observed between the out-of-sample observations and the forecasts in Table 3. It then may be possible on the basis of our results to make forecasts and simulations for planning and management purposes.

REFERENCES

- Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6): 716 723.
- Appiah, S.T. and Adetunde, I.A. (2011). Forecasting Exchange Rate between the Ghana Cedi and the US Dollar using Time Series Analysis. *Current Research Journal of Economic Theory*, 3(2): 76 – 83.

- Ari, Y. and Unal, G. (2016). Continuous Modelling of Foreign Exchange Rate of USD Versus TRY. https://www.researchgate.net/publication/50273564 retrieved 25th June 2016.
- Box, G.E.P. and Jenkins, G.M. (1976). Time Series Analysis, Forecasting and Control: Holden-Day, New York.
- Chong, C.W., Chun, L.S. and Ahmad, M.I. (2002). Modelling the Volatility of Currency Exchange Rate using Garch Model. *Pertanika J. Soc. Sci. & Hum.* 10(2): 85 95.
- Clement, U. (2016). Naira Will Do Better with the Yuan than the Dollar Martins-Odigie, Ex-NUFIBIE Boss. Vanguard on April 24, 2016. http://www.vanguardngr.com/2016/04/naira-will-better-yuan-dollar...
- Erdemlioglu, D., Laurent, S. and Neely, C.I. (2012). Econometric Modelling of Exchange Rate Volatility and Jumps. Working Paper 2012–008A, Research Division, Federal Reserve Bank of St. Louis. http:research.stlouisfed.org/wp/2012/2012–008.pdf
- Etuk, E.H. (2013). The Fitting of a SARMA Model to Monthly Naira-Euro Exchange Rates. Mathematical Theory and Modelling, 3(1): 17 – 27.
- Etuk, E.H. (2014). An Additive SARIMA Model for Daily Exchange Rates of the Malaysian Ringgit (MYR) and Nigerian Naira (NGN). *International Journal of Empirical Finance*, 2(4): 193 – 201.
- Etuk, E.H. and Bazinzi, N. (2015). Daily Uganda Shilling / United States Dollar Exchange Rates Modelling by Box-Jenkins Techniques. *International Journal of Management, Accounting and Economics,* 2(4): 339 – 345.
- Hannan, E.J. and Quinn, B.G. (1979). The Determination of the Order of an Autoregression. *Journal of Royal Statistical Society*, Series B, 41: 190 – 195.
- Li, H., Fang, Z. and Zhao, D. (2007). GBP/USD Currency Exchange Rate Time Series Forecasting using Regularized Least-Squares Regression Method. Proceedings of the World Congress on Engineering 2007 Vol. II WCE 2007, July 2 – 4, 2007, London, UK.
- Martinez, J. R. C. and Gaw, H. D. (2014). Time-Series Forecasting: Philippine Exchange Rate with Respect to US Dollars. A Thesis Submitted in Partial Fulfilment of Advance Econometrics (ECOMET2), De la Salle University, Manila.

- Osarumwense, O. and Waziri, E.I. (2013). Forecasting Exchange Rate between the Nigerian Naira and the US Dollar using Arima Models. *International Journal of Engineering Science Invention*, 2(4): 16 22.
- Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2): 461 464.
- Urrutia, J.D., Olfindo, M.L.T. and Tampis, R.L. (2015). Modelling and Forecasting the Exchange Rate of the Philippines: A Time Series Analysis. American Research Thoughts, 1(9): 1880 – 1938.

Daily Chinese Yuan - Nigerian Naira Exchange Rates Sarima Modelling

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.722	0.722	91.225	0.000
1	ı <u>b</u> ı	2	0.569	0.100	148.25	0.000
ı 🗖	וםי	3	0.396	-0.097	176.04	0.000
· 🗖 ·		4	0.201	-0.176	183.27	0.000
i þi	וםי	5	0.060	-0.064	183.92	0.000
ιQι	וםי	6	-0.063	-0.064	184.63	0.000
 '		7	-0.228	-0.218	194.05	0.000
C		8	-0.137	0.341	197.45	0.000
ιĘι		9	-0.066	0.151	198.25	0.000
ı þi	וים	10	0.043	0.109	198.60	0.000
· 🖻	וןי	11	0.134	-0.028	201.93	0.000
· 🖻	יםי	12	0.164	-0.088	206.96	0.000
' 🏳	111	13	0.197	-0.012	214.29	0.000
· P		14	0.150	-0.250	218.56	0.000
' P		15	0.169	0.315	223.98	0.000
' P		16	0.152	0.136	228.42	0.000
יםי	וןי	17	0.074	-0.031	229.47	0.000
1 🛛 1	111	18	0.046	0.015	229.89	0.000
1 1		19	0.024	-0.089	230.00	0.000
1 1		20	0.022	0.041	230.10	0.000
1 <u> </u> 1		21	0.064	-0.165	230.90	0.000
		22	0.084	0.288	232.32	0.000
' <u>P</u> '	' P	23	0.107	0.136	234.62	0.000
	1 1	24	0.145	-0.017	238.85	0.000
' 🖻	1 1	25	0.151	0.002	243.49	0.000
		26	0.205	0.007	252.08	0.000
		27	0.224	0.112	262.47	0.000
		28	0.240	-0.124	274.45	0.000
		29	0.230	0.233	285.50	0.000
		30	0.204	0.085	294.25	0.000
		31	0.204	-0.021	303.11	0.000
		32	0.190	-0.025	310.85	0.000
		33	0.156	-0.027	316.10	0.000
		34	0.091	-0.054	317.91	0.000
		35	0.051	-0.123	318.48	0.000
1 🛛 1	וןיי	36	-0.034	-0.036	318.74	0.000

Volume 8, No.1, 2016

FIGURE 3: CORRELOGRAM OF THE SEASONAL DIFFERENCES

Daily Chinese Yuan - Nigerian Naira Exchange Rates Sarima Modelling

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.22	5 -0.225	8.8029	0.003
1]1	111	2 0.03	4 -0.017	9.0098	0.011
1 🛛 1	1 1 1	3 0.04	0.047	9.2950	0.026
	וםי	4 -0.09	7 -0.081	10.946	0.027
ı (t	וםי	5 -0.03	6 -0.081	11.173	0.048
ı þi	ի դիր	6 0.07	9 0.058	12.285	0.056
		7 -0.46	0 -0.451	50.482	0.000
1 🕅 I		8 0.03	2 -0.221	50.668	0.000
ı 🛛 i		9 -0.06	9 -0.165	51.542	0.000
i 🕅 i	1 1	10 0.03	3 -0.018	51.745	0.000
יםי	ון ו	11 0.10	8 0.040	53.918	0.000
1 1	וןי	12 -0.00	2 -0.037	53.919	0.000
· 🖻		13 0.14	3 0.193	57.772	0.000
i ا		14 -0.11	7 -0.362	60.369	0.000
ı pı		15 0.06	7 -0.166	61.230	0.000
יםי	1 1	16 0.11	4 0.002	63.704	0.000
יםי	וןי	17 -0.09	0 -0.041	65.270	0.000
1 🛛 1	ון ו	18 -0.00	9 0.063	65.285	0.000
I 🛛 I	יםי	19 -0.03	7 -0.068	65.557	0.000
יםי		20 -0.07	9 0.135	66.786	0.000
1 🛛 1		21 0.03	0 -0.319	66.964	0.000
1]1		22 -0.00	4 -0.155	66.967	0.000
101		23 -0.02	7 0.001	67.109	0.000
i pi	וןי	24 0.04	5 -0.033	67.515	0.000
יתי		25 -0.08	0 -0.021	68.812	0.000
1 [] 1		26 0.06	3 -0.123	69.615	0.000
		27 0.01	0 0.116	69.633	0.000
1 [] 1		28 0.05	3 -0.250	70.218	0.000
		29 0.02	9 -0.095	70.396	0.000
		30 -0.05	2 0.005	70.954	0.000
· •		31 0.03	0.006	/1.245	0.000
, L		32 0.03	2 0.023	/1.458	0.000
· µ·		33 0.05	4 0.049	72.091	0.000
· [] ·		34 -0.05	2 0.110	72.684	0.000
		35 0.08	3 0.022	(4.1/3	0.000
Ц		36 -0.07	/ -0.015	/5.481	0.000

Volume 8, No.1, 2016

FIGURE 5: CORRELOGRAM OF THE DIFFERENCE OF THE SEASONAL DIFFERENCES

TABLE 1: ESTIMATION OF THE SARIMA $(0,1,1)X(0,1,1)_7$ MODEL

Dependent Variable: DSDCYNG Method: Least Squares Date: 04/15/16 Time: 07:36 Sample (adjusted): 9 179 Included observations: 171 after adjustments Convergence achieved after 9 iterations MA Backcast: 1 8

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MA(1) MA(7) MA(8)	-0.275399 -0.948784 0.262004	0.074449 0.016961 0.072011	-3.699157 -55.93903 3.638390	0.0003 0.0000 0.0004
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.539972 0.534496 0.084802 1.208162 180.8057 2.007343	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000175 0.124293 -2.079599 -2.024482 -2.057235

TABLE 2: ESTIMATION OF THE SARIMA (0,1,0)X(0,1,1)7 MODEL

Dependent Variable: DSDCYNG Method: Least Squares Date: 04/15/16 Time: 07:40 Sample (adjusted): 9 179 Included observations: 171 after adjustments Convergence achieved after 5 iterations MA Backcast: 2 8

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MA(7)	-0.948441	0.015915	-59.59449	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.503990 0.503990 0.087537 1.302662 174.3667 2.527810	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000175 0.124293 -2.027681 -2.009309 -2.020226
Inverted MA Roots	.99 22+.97i	.6278i 89+.43i	.62+.78i 8943i	2297i

Autocorrelation	Partial Correlation	AC PAC Q-Stat Prob	_
1	I I I	1 -0.005 -0.005 0.0041	-
1 j 1	i]i	2 0.018 0.018 0.0599	
1 j 1	i]i	3 0.015 0.015 0.0989	
ı 🛛 ı	וםי	4 -0.059 -0.059 0.7115 0.399)
ı 🛛 ı	וםי	5 -0.064 -0.065 1.4338 0.488	3
11	11	6 -0.018 -0.017 1.4926 0.684	Ļ.
I <mark>n</mark> I	וםי	7 -0.100 -0.097 3.2894 0.511	
I I		8 -0.100 -0.104 5.0931 0.405	5
10	וןי	9 -0.028 -0.036 5.2374 0.514	Ļ.
ון ו	I]I	10 0.026 0.024 5.3587 0.616	5
ı þi	וםי	11 0.111 0.103 7.6223 0.471	1
ון ו	ון ו	12 0.044 0.025 7.9797 0.536	5
· 🗖 ·		13 0.134 0.117 11.342 0.332	2
u n t i	ן מי	14 -0.107 -0.124 13.498 0.262	2
ı þi	ון ו	15 0.039 0.027 13.786 0.315	j –
i þ	ן ים	16 0.117 0.125 16.414 0.228	\$
ı 🛛 ı	וןי	17 -0.052 -0.029 16.936 0.260)
10	1 1	18 -0.025 -0.003 17.056 0.316	ĵ –
11	1 1	19 -0.018 0.001 17.116 0.378	\$
1 🛛 1	ון ו	20 -0.017 0.037 17.174 0.443	\$
ı þi	ן ון ו	21 0.029 0.043 17.344 0.500)
i þi	1 1	22 0.030 0.006 17.524 0.554	ŧ.
ı þi	ון ו	23 0.032 0.040 17.724 0.606	j –
ı þi		24 0.029 0.024 17.894 0.656	j –
יםי	וםי	25 -0.063 -0.052 18.699 0.664	ł.
r þr	ון ו	26 0.072 0.055 19.751 0.657	1
111	ון ו	27 0.016 0.028 19.803 0.708	\$
· P		28 0.128 0.134 23.166 0.568	\$
i þi	ון ו	29 0.027 0.025 23.321 0.615	j –
11	ון ו	30 -0.022 0.027 23.424 0.662	2
i þi	י ון י	31 0.027 0.033 23.579 0.704	ł.
i þi	יון י	32 0.039 0.033 23.905 0.734	ł.
יםי	ים ו	33 0.069 0.104 24.914 0.729	
11		34 -0.015 -0.008 24.961 0.769	
ים	ו ו	35 0.080 0.127 26.365 0.747	1
111	1 111	36 -0.031 0.012 26.577 0.778	٤

Image: Image:

|--|

Days	Observations	Forecasts
14 TH APRIL 2016	30.7017	30.6353
15 TH APRIL 2016	30.7376	30.7505
16 TH APRIL 2016	30.7334	30.7516
17 TH APRIL 2016	30.7352	30.7607
18 TH APRIL 2016	30.7459	30.8047
19 TH APRIL 2016	30.8167	30.7956
20 TH APRIL 2016	30.7375	30.7628
21 ST APRIL 2016	30.6993	30.6183