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ABSTRACT 
In the year 1225, Leonardo of Pisa studied the equation x3 + 2x2 + 10x -20 = 0 and 
produced x = 1.368 808 107. Nobody knows by what method Leonardo found this value. In 
this paper, we examined this Leonardo’s equation using iterative, Newton’s and phc 
(Polynomial Homotopy Continuation) and compare the results. 
Keywords:  Leonardo’s equation, polynomial systems, Homotopy continuation, PHCpack. 
      
INTRODUCTION 
Continuation, embedding or homotopy methods have long served as useful theoretical tools 
in modern mathematics. The use of deformation to solve nonlinear systems of equation 
may be traced back at least to Lahaye (1934). The classical embedding methods were the 
first deformation methods to be numerically implemented and may be regarded as a 
forerunner of predictor-corrector method for path following. Introductions into aspects of the 
subject may be found in the book of Garcia and Zangwill(1981); Keller (1987), Rheinboldt 
(1977) and Allgower and George (2003). In the literature of numerical analysis, the term 
numerical continuation and path following are used interchangeably. For contemporary 
applications of this powerful method, see Sharma and Methi (2011), Barari et al (2008), 
Choobbasti et al (2008), Sazzad (2011), Mirgolbabaei and Ganji (2009), Fazeli et al (2008), 
Ganji et al (2008), Twinkle et al (2012). The necessity of solving systems of nonlinear 
equations often arises in simulating and designing a chemical plant or optimizing a process. 

When f(x) = 0 where f : Rn  Rn is a C2 – map is a system of nonlinear equations, we want 
to find the solution of f(x). The traditional Newton’s method applied to nonlinear equations of 
the form f(x) = 0 in general will only converge if the iteration is started near a root of the 
equation. Kuno and Seader  (1988) said that, Newton’s method is locally convergent. Tzong-
Mou (2004) extended it to cover Kinematics Design. In addition, the method is designed to 
locate, at best, just one root even though multiple solutions may exist. This is the major 
disadvantage. However, Tzong-Mou (2005) used technique to avoid divergence for planar 
and spatial Newton’s homotopy continuation method. Let f(x) = 0 be a system of n 

polynomial equations in n unknowns. Denoting f = (f1, f2, , fn), we want to find all isolated 

solutions of  
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for x = (x1, x2, , xn). This problem is very common in many fields of science and 
engineering, such as formula construction, geometric intersection problems, inverse 
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kinematics, power flow problems with PQ-specified bases, computations of equilibrium states, 
etc. Elimination theory-based methods, most notably the Burcberger algorithm Buchberger 
(1985) for constructing Grobner bases, are the classical approach to solving Eq.(1.0), but 
their reliance on symbolic manipulation makes those methods seem somewhat unsuitable for 
all but small problems. In 1977, Garcia and Zangwill (1979) independently presented 
theorems suggesting that homotopy continuation could be used to find numerically the full 
set of isolated solutions of Eq.(1.0). During the last two decades, this method has been 
developed into a reliable and efficient numerical algorithm for approximating all isolated 
zeros of polynomial systems Li (1997). Thus, if f(x) is the system of nonlinear equations to be 
solved and g(x) is a second simpler system of the same number of equations, the homotopy 
function might be constructed as 

    H(x, t) = tf(x) + (1 – t)g(x) = 0  0  t  1, x  Rn                                                  
(1.1) 
where t is a scalar homotopy parameter which is gradually varied from 0 to 1 as the path is 
tracked from starting point to a solution. One of the great advantages of the homotopy 
method is that, under some conditions, they offer a way to have a globally convergent 
method to find the zeros of any function f: Rn → Rn. In general, iterative methods for solving 

a nonlinear equation in Rn depend strongly on the selection of the initial data. In order to 
reduce this dependence, the continuation process uses a family of equations given in Eq. 

(1.2) which for t = 1 contains the given equation. If for each t  [0, 1] a solution x(t) of 

Eq.(1.2) exists that varies continuously with t, then the function x : [0, 1]  Rn constitute a 
curve in Rn between the-assumed point to be given-point x0 = x(0) and the unknown solution 
x* = x(1) of the original equation. Hence iterative processes may be considered which use 
the curve as a guide and channel their iterates in its proximity from x0 to the intended limit 
x*. For further discussions of how homotopy continuation works see the papers of Rheinboldt 
(1980), Garcia and Zangwill (1981), Rafiq and Muhammad (2008) and M. Abdullahi and B. 
Yusuf (2006). For introduction to homotopy continuation methods specific for polynomial 
systems, we recommend Li (2003) and Sommese et al (2005). The books of Allgower and 
George (2003) and Govaerts (2000) provide introduction to path following methods applied 
to general nonlinear system and systems of differential equations. Dumortier et al (2006) 
studied polynomial differential systems in the real plane and developed software to allow 
phase portraits. Computer algebra is used to compute all singularities, but it is noted in 
Dumortier et al (2006) that for high degrees this can take a long time. Recent related 
symbolic methods are described in Lazard and Rouillier (2007) and Li and Wang (1993). 
 
In most applications, one is mainly interested in real solutions. However, a complex curve of 
a polynomial system may have isolated real solutions. Such a real solution on a complex 
curve will be isolated in the real space and will show itself as a single solution on the curve. 
Homotopy continuation method in the last two decades has been developed into a reliable 
and efficient numerical algorithm for solving all isolated zeros of polynomial system. During 
the last few years, major computational breakthrough has emerged in the area, that was 
investigated by Li (2003). Tzong-Mou (2005) also used the technique to search for all the 
roots of inverse Kinematics Problem of Robot. Base on the Bernshtein theory on root count, 
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the polyhedral homotopy is established to considerably reduce the number of homotopy path 
that need to be traced to find all the isolated roots, making the method much more powerful. 
Li (2003) reports the most recent development of this new method along with future 
considerations. PHCpack is a software to solve polynomial systems via homotopy continuation 
methods. It is a general-purpose solver for polynomial systems by homotopy continuation. 
The software package PHC implements homotopy continuation methods to compute 
numerically approximations to all isolated solutions of a system of n polynomial equations in n 
unknowns. The name Polynomial Homotopy Continuation unites the three key concepts of the 
method. Since we solve polynomial systems we exploit the algebraic structure to count the 
roots and to construct a start system. By continuation methods, the known solutions of the 
start system are extended to the desired solutions of the target system. This deformation is 
defined by homotopy, that is, a family of start systems connecting start and target system. 
For an overview on how the algorithm in PHC are used in practice to solve polynomial 
systems, see [Verschelde, 1999] 
 
METHODOLOGY 
In the year 1225, Leonardo of Pisa studied the equation 
   f(x) = x3 + 2x2 + 10x – 20          (1.1) 
and produced x = 1.368 808 107. Nobody knows by what method Leonardo found this value, 
but it is remarkable result for this time [Francis, 1968]. 
 
Leonardo’s equation using iterative method 
Theorem  1.2 
 If r is a root of f(x) = 0 and if the equation is rewritten in the form x = g(x) in such a 

way that |g(x)| < 1 in an interval I centered at x = r, then the sequence xn = g(xn – 1) with 
arbitrary but in the interval I has lim xn= r. 
Applying the above theorem to Leonardo’s Eq. (1.1), the equation can be put into the form x 
= g(x) in many ways. We take  

                         x = g(x) = 
2

20

x 2x 10 
     

with x0 = 1, we find that  

                      
1

20
x   1.538 461 538

13
 . 

Continuing the iteration produces the sequence of Table 1.1. Sure enough, on the twenty – 
fourth round Leonardo’s value appears. 
 

n xn n xn 

1 1.538 461 538 13 1.368  817 874 

2 1.295 019 157 14 1.368  803 773 

3 1.401 825 309 15 1.368  810 031  

4 1.354 209 390 16 1.368  807 253 

5 1.357 298 092 17 1.368  808 486 

6 1.365 929 788 18 1.368  807 940 

7 1.370 086 003 19 1.368  808 181 
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8 1.368 241 023 20 1.368  808 075 

9 1.369 059 812 21 1.368  808 122 

10 1.368 696 397 22 1.368  808 101  

11 1.368 857 688 23 1.368  808 101 

12 1.368 786 102 24 1.368  808 107 

 

         Table 1.1 

Leonardo’s equation Newton’s method 
Newton’s method is the method of choice to solve nonlinear systems numerically; however, 
its convergent is only local. Beginning with the Taylor’s formula 

        21
n 1 n 1 n 1 n 22

f (r) f (x ) (r x )f (x ) (r x ) f ( )   
                  (1.2.1) 

Retaining the linear part, recall that f(r) = 0 and define xn by putting it in place of the 
remaining r to obtain 
       

n 1 n n 1 n 10 f (x ) (x x )f (x )  
          

which rearranges at once into 

                n 1

n n 1

n 1

f (x )
r x x

f (x )







 


          (1.2.2) 

This is the Newton’s iteration formula. 
Now we use Newton’s formula to solve Leonardo’s Eq. (1.1), 
with  

                        f(x) = x3 + 2x2 + 10x – 20, 
 we find that 
                              f(x) = 3x2 + 4x + 10 

and the iteration formula 

  
3 2

n 1 n 1 n 1

n n 1 2

n 1 n 1

x 2x 10x 20
x x

3x 4x 10

  



 

  
 

 
        (1.2.3) 

Once more choosing x0 = 1, we obtain the results in the table below: 

N 1 2 3 4 

xn 1.411 764 
706 

1.369 336 
471 

1.368 808 
189 

1.368 808 108 

Table  1.2 
 
The speed of convergence is remarkable. In four iterations we have essentially Leonardo’s 
value. In fact, the computation shows that 

                         
f (1.368808107) 0.000000016

f (1.368808108) 0.000000005

 

 

                                                     

(1.2.4) 
which suggest that the Newton’s result is the winner by a nose. 
 
Leonardo’s equation using phcpack 
1     1 
x^3+2*x^2+10*x-20; 
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ROOT COUNTS  
total degree : 3 
 
HOMOTOPY PARAMETERS : 
  d : 16 
  k :  2 
  a :  9.98168055857237E-01   6.05023327334112E-02 
  t :  1.00000000000000E+00   0.00000000000000E+00 
  no projective transformation 
 
****************** CURRENT CONTINUATION PARAMETERS ***************** 
Global Monitor:  
  1. The condition of the homotopy                                : 0 
  2. Number of paths tracked simultaneously                 : 1 
  3. Maximum number of steps along a path                     : 500 
  4. Distance from target to start end game                       : 1.000E-01 
  5. Order of extrapolator in end game                              : 0 
  6. Maximum number of re-runs                    : 1 
Step Control (Predictor) :                       along path : end game 
  7:8. type ( x:Sec,t:Rea ):( x:Sec,t:Rea )    : 0         : 0 
  9:10. minimum step size                                    : 1.000E-06 : 1.000E-08 
 11:12. maximum step size                                   : 1.000E-01 : 1.000E-02 
 13:14. reduction factor for step size                      : 7.000E-01 : 5.000E-01 
 15:16. expansion factor for step size                     : 1.250E+00 : 1.100E+00 
 17:18. expansion threshold                                 : 1         : 1 
Path Closeness (Corrector) :                    along path : end game 
 19:20. maximum number of iterations            : 4         : 4 
 21:22. relative precision for residuals                     : 1.000E-09 : 1.000E-11 
 23:24. absolute precision for residuals        : 1.000E-09 : 1.000E-11 
 25:26. relative precision for corrections      : 1.000E-09 : 1.000E-11 
 27:28. absolute precision for corrections      : 1.000E-09 : 1.000E-11 
Solution Tolerances:                           along path : end game 
 29:30. inverse condition of Jacobian           : 1.000E-04 : 1.000E-12 
 31:32. clustering of solutions                               : 1.000E-04 : 1.000E-12 
 33:34. solution at infinity                     : 1.000E+08 : 1.000E+12 
******************************************************************** 
 
Output Information during Continuation: 
  0 : no intermediate output information during continuation      
 
Timing Information for Continuation 
The elapsed time in seconds was           0.000000000 =  0h 0m 0s  0ms 
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The Solutions: 
 
3    1 
========================================================
======= 
Solution 1:    start residual :  3.553E-15   #iterations : 1   success 
t :  1.00000000000000E+00   0.00000000000000E+00 
m : 1 
the solution for t : 
 x : -1.68440405391069E+00   3.43133135019769E+00 
== err :  1.591E-16 = rco :  1.000E+00 = res :  3.553E-15 = complex regular == 
solution 2 :    start residual :  3.553E-15   #iterations : 1   success 
t :  1.00000000000000E+00   0.00000000000000E+00 
m : 1 
the solution for t : 
 x : -1.68440405391069E+00  -3.43133135019769E+00 
== err :  1.591E-16 = rco :  1.000E+00 = res :  3.553E-15 = complex regular == 
solution 3 :    start residual :  3.174E-35   #iterations : 1   success 
t :  1.00000000000000E+00   0.00000000000000E+00 
m : 1 
the solution for t : 
 x :  1.36880810782137E+00   0.00000000000000E+00 
== err :  1.505E-36 = rco :  1.000E+00 = res :  0.000E+00 = real regular == 
========================================================
======== 
A list of 3 solutions has been refined : 
 
Number of regular solutions         : 3. 
Number of singular solutions       : 0. 
Number of real solutions              : 1. 
Number of complex solutions      : 2. 
Number of clustered solutions     : 0. 
Number of solutions at infinity     : 0. 
Number of failures                       : 0. 
========================================================
======== 
Frequency tables for correction, residual, and condition numbers : 
FreqCorr :  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3            : 3 
FreqResi :  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3            : 3 
FreqCond :  3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           : 3 
Small correction terms and residuals counted to the right. 
Well conditioned and distinct roots counted to the left. 
 

Mohammed Abdullahi, Bello I. 
Mshelia and Dr. Sabo Hamma 

 

Solution of Polynomial System Using Phcpack 
 

 



50 
 

TIMING INFORMATION for Root Refining 
The elapsed time in seconds was           0.000000000 =  0h 0m 0s  0ms 
 
TIMING INFORMATION for solving the polynomial system 
The elapsed time in seconds was         220.953000000 =  0h 3m40s953ms 
 
PHC ran from 9 August 2011, 17:23:08 till 9 August 2011, 17:28:02. 
The total elapsed time is 295 seconds = 4 minutes 55 seconds. 
 
DISCUSSIONS 
The result obtained by Leonardo for solving Eq. (1.1) was quite remarkable for his time, 
regardless of what method used in obtaining the result. The iteration method, in this setting 
seems to move at a snail speed. The function f(x) = 0 is transformed to the form x = g(x) 

and have xn + 1 = g(xn) as its iteration scheme with the condition that |g(x)| < 1. See 

Theorem 1.2 above. Looking at Table 1.1, we observed that the Leonardo’s value appears on 
the twenty-fourth iteration. This means that iteration method is very slow in convergence. 
Newton’s method is the method of choice to solve nonlinear systems numerically; however, 
its convergent is only local, that is, it gives only one approximation to the solution as does 
the iteration method. Newton’s method in this problem uses initial guess x0 = 1. The method 
depends on the initial choice of the guess as close as possible to the actual root to guarantee 
speedy convergence. We observed that the speed of convergence of Newton’s method is 
remarkable. The Leonardo’s value is obtained in just four iteration, as observed from Table 
1.2. In fact, the computation in Eq.(1.2.4) shows that the Newton’s method is the winner by 
a nose. PHCpack, a general-purpose solver for polynomial systems by homotopy 
continuation. The software is as a result of a PhD work of the author [Verschelde, 1999]. It is 
proved to be a very reliable and efficient way to solving any polynomial or polynomial 
systems of any dimension. The software uses the predictor-corrector approach as seen in 
Section 2.3. The phc gives all the three expected solutions of Eq (1.1), two of which are 
complex solutions. 
  
We see that if we compare the first two schemes with phc, we observe that Iterative and 
Newton’s schemes give only an approximation to the root and both schemes provides only 
one root. The convergent in the two schemes are only local, that is, they provide only one 
solution. Nothing is said about the other two remaining roots of Eq. (1.1). On the other hand, 
to achieve a global convergence, we use homotopy. PHCpack provides all the three solutions 
along with their characteristics. In our problem, we have the three solutions indicating a 
refinement of the solutions, of the three regular solutions; one is real and the other two, 
complex. Nevertheless, the phc also gives an approximation. Though it is most reliable and 
efficient. As a research interest, one can apply interval analysis of [(Moore, 1996), (Kearfott, 
1994) and (Alefeld, 1983)] to the end game to obtain exact solutions. This is an area of 
interest. 
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