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ABSTRACT 
In this paper Solution of definite integrals of real variable functions and its 
solution and solve complicated complex integrals and its solution. The 
solution is used to solve some problem in science and technology. Based on 
the findings the integral of  to  is good on solving of problem 
science and technology than 20 to . In the solution  of calculus residue 
theory on electrical circuit  if t > 0 it complete the contour by a large 
semicircle in the upper half plane therefore we conclude that there is a 
current flowing in the circuit.  

 
INTRODUCTION 
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The coefficient b1 is called the residue of f(z) at pole z  = a. The circle  is arbitrary and may 
therefore be replaced by any closed contour C (small or large).  (Spiegel) 
One of the most  remarkable  application of integration in the complex plane in general, and 
Cauchy’s theorem in particular, is that it gives a method for calculating real integral that up 
until now, would have been difficult or even impossible. The residue theorem allows us to 
evaluate integral without actually physically integrating it allow us to evaluate an integral just 
by knowing the residue theorem to evaluate certain real integral which are not possible using 
real integrations techniques from single variable calculus and how to find the values of certain 
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infinite sums. Residues are the building blocks of a general method for computing contour 
integrals of analytic functions. (Awasthi). 
 
AIM AND OBJECTIVES 
The aim and objectives of these papers is to solve calculus of residue and its solution to:  

(i) Solve definite integrals of real variable functions and its solution   
(ii)  Solve complicated complex integrals and its solution. 

 
 
 
METHODOLGY  
Integral of trigonometric functions from 0 to 2 : 
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By “trigonometric function” we mean a function of θcos  and θsin . The obvious way to turn 
this into a contour integral is to choose the unit circle as the contour, in other words to write

θz  , and integrate with respect to θ . On the unit circle, both θcos  and θsin can be written 
as simple algebraic functions of Z. 
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And making this replacement turns the trigonometric function into algebraic function of Z 
whose poles can be easily found 
 
 

Integrals of the type  
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Or, equivalently, in the case where f(x) is an even function of x 
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can be found quite easily by inventing a closed contour in the complex plane which includes 
the required integral. The simplest choice is to close the contour by a very large semi-circle in 
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the upper half-plane. Suppose we use the symbol “R” for the radius. The entire contour integral 
comprises the integral along the real axis from –R to +R together with the integral along the 
semi-circle arc. In the limit as R the contribution from the straight line part approaches 
the required integral I, while the curved section may in some cases vanish in the limit. (Fisher, 
2002) 

R -R 

 
 
RESULT AND DISCUSSION 
Example Used method of contour integration to prove that  
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Where  
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z = a lies inside C residue at the simple pole z = a is given by  
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Example Show by contour integration that 
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Consider the contour C comprising of a semi-circle Centre at origin and radius R from x = -R 
to x = R,  
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Poles of f(z) are given by izz  01 2  are  simples  poles, only z = I lies within 
the contour, the residue at  z = i   
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Hence by Cauchy residue theorem we have, 
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Example Consider a resistance R and inductance L connected in series with a voltage V (t). 
Suppose V (t) is a voltage impulse, that is, a very high pulse lasting for very short time.  
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Where A is the area under the curve V (t), the current due to a voltage tie  is  LiR
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the current due to our voltage pulse is  
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This has a simple pole at 
L
iR  
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R -R 

 
 Thus the residue at 

L
iR is given by  
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SUMMARY/ CONCLUSION 
In this work, we have able to solve the definite integrals of real variable functions and to use 
the solution to some problem in science and technology. Based on the findings the integral of 

 to  is good on solving of problem science and technology than 20 to . In. the 
application of residue theory on electrical circuit  if t > 0 it complete the contour by a large 
semicircle in the upper half plane therefore we conclude that there is a current flowing in the 
circuit. 
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