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ABSTRACT
Rivers State of Nigeria Monthly Allocation is hereby modelled using seasonal
autoregressive integrated moving average (SARIMA) techniques. The period
covered is from 2007 to 2012. This realization shall be called RSMA. Its time
plot shows a fairly horizontal trend. An outlier is evident in June 2008.
Seasonality is not obvious from this time plot. An inspection of the data
reveals that yearly minimums tend to occur early in the year and the
maximums in the middle of the year. This means that the data are fairly
seasonal of period 12 months. A 12-monthly differencing of RSMA yields
the series SDRSMA which has a generally horizontal trend too. Augmented
Dickey Fuller Test for RSMA is significant whereas that for SDRSMA is highly
significant. That means that even though both series could be said to be
stationary, SDRSMA is the more stationary. The autocorrelation structure of
SDRSMA makes the SARIMA models of orders (0, O, 1)x(0, 1, 1)1z and (0O, O,
1)x(1, 1, 1)1, suggestive for RSMA. The estimate of the former is non-
invertible whereas that of the latter is not only invertible but possesses
uncorrelated residuals that follow the normal distribution; hence, its

adequacy.
Keywords: Rivers State Monthly Allocation, SARIMA models, Time Series Analysis.

INTRODUCTION

The Rivers State of Nigeria like every other state receives monthly allocation from the
Federation Account. The focus of this write-up is obtaining an adequate model which could
be used in forecasting future values of the allocation. In particular, a seasonal
autoregressive integrated moving average (SARIMA) approach shall be adopted. Many
economic and financial time series, apart from being volatile, are seasonal. Box and Jenkins

(1976) proposed SARIMA models for such series. Observation has been made herein that
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the particular realization analysed shows some seasonal tendencies of annual periodicity.
There has been a growing interest in the adoption of SARIMA techniques in modelling such
time series. A few of the researchers who have published works on SARIMA modelling
include Appiah and Adetunde (2011), Etuk and Igbudu (2013), Osarumwense(2013), Bako
et al.(2013), Singh (2013), Ali(2013), Abdul-Aziz et al.(2013), Etuk et al. (2012), Lee et
al.(2012).

MATERIALS AND METHODS
The data for this work are seventy two values of Rivers State Monthly Allocation (RSMA)
from 2007 to 2012 obtainable from the Rivers State Ministry of Finance, Port Harcourt. The

actual values used in the analysis are corrected to the nearest tenth million of naira.

Sarima Models
A time series {X;} is said to follow an auforegressive moving average model of orders p and
gdesignated ARMA (p.q) if it satisfies the following difference equation

Xi - ouiXig - oeXig - . - apXt—p =&t + Blgtfl + BZSFZ +ot Bq Etq (1)

Where o’s and the f’s are constants such that model (1) is both stationary and invertible.

Model (1) may be written more specifically as
A(L)X; - B(L)s; (2)

Where A (L) = 1 - oL - apL? - ... - 0pl? and B (L) = 1 + BiL + BoL” + .. + BgL% and L is the
backshift operator defined by L*X, = X . Stationarity and invertibility conditions are such

that the zeros of A (L) - 0 and B(L) - O lie outside the unit circle respectively.

Many real-life time series are not stationary. For such a time series, Box and Jenkins(1976)
proposed that differencing of sufficient order d could render it stationary. That means, the
series {V’X,} is stationary. Here the symbol V is the difference operator defined by V = 1 —
L. If the d™ difference {VX;} follows an ARMA(p.q) model then {X;} is said to follow an

auforegressive infegrated moving average model of orders p, d and q designated ARIMA(p,
d, q).

If a time series {X;} is seasonal in nature, Box and Jenkins (1976) also proposed that it could

be modelled more specifically by
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AL)DL )V VL X - BLO(L e (3)

Where ®(L) and @(L) are the seasonal autoregressive and moving average operators
respectively and s is the period of seasonality. Here V" is the seasonal difference operator
and is defined by V° = 1 —L°. Suppose they are respectively polynomials of orders P and Q,
then model (3) is said to be a mulfiplicative scasonal auforegressive integrated moving
average model of orders p, d, q, F, D, Q and s designated SARIMA(p, d, q)x( F. D, Q)s .

Sarima Model Fitting

The fitting of a model of the form (3) begins with the determination of the orders p, d, q, P,
D, Q and s. Knowledge of the theoretical properties of the ARMA model family is necessary
for this purpose. The seasonality period s might be directly suggestive from the seasonal
nature of the time series. The autocorrelation function (ACF) may be useful in the
determination of s. the ACF of an s-periodic seasonal series shows a sinusoidal pattern of

the same periods.

The differencing orders d and D are chosen such that d + D < 3. Often for stationarity that
is enough. At each stage stationarity might be tested using a technique like the Augmented
Dickey-Fuller (ADF) Test. The autoregressive orders p and P are usually estimated by the
non-seasonal and seasonal cut-off lags of the partial autocorrelation function (PACF)
respectively. Similarly the moving average orders q and Q are determined by the non-
seasonal and the seasonal cut-off lags of the ACF. After order determination the model
parameters might be estimated by non-linear optimization techniques like the least error
sum of squares technique. In this write-up the statistical and econometric software Eviews
7 which is based on the least squares procedure shall be used. To choose between models
the Akaike Information Criterion (AIC) may be used. Etuk (2009) empirically demonstrated

that AIC is one of the order determination criteria for full-order auroregressive modelling.

RESULTS AND DISCUSSIONS

The time plot of RSMA in Figure 1 reveals a generally horizontal trend. Seasonality is not so
obvious. There is an outlier at June 2008. It is observed not on the time-plot but by direct
inspection that the yearly minimums occur in the first four months of the year. For 2007 it
is in January; 2008 February; 2009 April; 2010 April; 2011 February; 2012 January.
Similarly the maximums occur between March and July, 2007 May; 2008 June; 2009
March; 2010 May; 2011 July; 2012 March. These tendencies are evidence of seasonality. It
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was therefore necessary to difference the time series seasonally. This yielded the series
SDRSMA. The time plot of SDRSMA in Figure 2 shows a generally horizontal trend. The ADF
Test statistic for RSMA and SDRSMA are equal to -3.19 and -4.34 respectively. With the 1%,
5% and 10% critical values equal to -3.53, -2.90 and -2.59 respectively, the non-
stationarity hypothesis test is highly significant with SDRSMA and just significant and not
highly so, for RSMA. This means that at 1% level of significance RSMA might not be
considered stationary whereas SDRSMA would be. The correlogram of SDRSMA in Figure 3
indicates seasonality of period 12 months and the presence of a seasonal moving average
component of order one. Moreover, the autocorrelations at lags 11 and 13 are comparable,
suggesting a SARIMA(O, O, 1)x(0, 1, 1) model for RSMA. The significant spike at lag 12 in
the PACF suggests the involvement of a seasonal autoregressive component of order one. In
conjunction with the ACF structure this indicates a SARIMA (0, O, 1)x(1, 1, 1) model for
RSMA. This model as estimated in Table 1 is given by

SDRSMAt =&t + -21278t—1 - .974281[_12 - .238781[_]3

Which is non-invertible and therefore unacceptable. The other model, the SARIMA(O,
0,1)x(1, 1, 1)1z, as estimated in Table 2, is given by

SDRSMA; + .31TOSDRSMA; 12 = & + .3998¢g;_1 - .3343¢;_12 - .8888¢;_13 4)

Model (4) has been found to be adequate on the following grounds:
1) The residuals are mostly uncorrelated. See Figure 4.

2) The residuals are normally distributed. See the Jarque-Bera test of Figure 5.

CONCLUSION
It may then be concluded that Rivers State Monthly allocation follows a SARIMA(O, 0, 1)x(1,

1, 1)1z model. This might be used as basis for its forecasting,
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Autocorrelation Partial Correlation AC PAC Q-Stat Prob

0245 0249 39121 0.048
0.082 0.021 43431 0.114
0.104 0.084 5.0545 0.168
0.076 0.032 54404 0.245
0.042 0.010 55536 0.351
0.03% 0.018 56668 0.462
0130 0115 6.8576 0.444
-0.097 -0.176 75373 0.480
0.081 0150 B8.0169 0.532
10 -0.024 -0.109 B.0582 0.623
11 -0.144 -0121 9.6282 0.564
12 -0.448 -0.453 25183 0.014
13 -0.110 0.166 26.142 0.016
14 0.085 0119 286.725 0.021
15 -0.084 0.004 27.315 0.026
16 0.092 0.112 25.027 0.031
17 0.011 0.048 28.037 0.045
18 -0.033 -0.056 28.134 0.060
19 -0.056 0.042 28416 0.076
20 0.071 -0.040 28.884 0.090
21 0.005 0085 28886 0.117
22 -0.023 -0.068 28.936 0.147
23 0124 -0.021 30479 0.136
24 -0.020 -0.324 30520 0.168
25 -0.061 0.008 30.915 0.192
26 -0.044 0108 31.128 0.224
27 0,001 0.017 31128 0.266
28 -0.059 0.069 31.537 0.2594
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FIGURE 3: CORRELOGRAM OF SDRSMA

TABLE 1. ESTIMATIOM OF SARIMA (0, 0, 1)X(0, 1, 1) MODEL
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Dependent Variable: SDRSMA

Method: Least Squares

Date: 08/2314 Time: 14:02
Sample (adjusted): 2008M01 2012M12

Included observations: 60 after adjustments
Failure to improve 3SR after 11 iterations

MA Backcast. OFF (Roots of MA process too large)

Volume 6, No. 2, 2014

Variable Coefficient Std. Error t-Statistic Prob.
MALT) 0212737 0130642 1.628391 0.1090
MA[12) -0.974197 0.073849 -12.35519 0.0000
MAL13) -0.238727 0146070 -1.634331 01077
R-squared 0432772 Mean dependentvar -2871.328
Adjusted R-squared 0412869 S.D. dependentwvar 2052828
S.E. of regression 1573045  Akaike info criterion 2221329
Sum squared resid 141E+10  Schwarz criterion 2231801
Log likelinood -663.38987 Hannan-CQuinn criter. 2225425
Durbin-Watson stat 1.951955
Inverted MA Roots 1.00 87-.50i B87+.580i B0+.86i
.50-.86i A00+1.00i A00-1.00i -.25
-.50+.86i -.50-.86i -.86+.50i -.86-.50i
-89
Estimated MA process is noninvertible
TABLE 2. ESTIMATION OF THE SARIMA (0, 0, 1) X (1, 1, 1); MODEL
Dependent Variable: SDRSMA
Method: Least Squares
Date: 08/2314 Time: 14:08
Sample (adjusted). 2009M01 2012M12
Included observations: 48 after adjustments
Convergence achieved after 11 iterations
MA Backcast 2007M12 2008M12
Variable Coefficient Std. Errar t-Statistic Prob.
AR(12) -0.31100% 0102286  -3.040212 0.0040
MACT) 0.399762 0.081072 4.930971 0.0000
MAL12) -0.334261 0077604  -4.307245 0.0001
MA13) -0.888798 0023266  -38.20155 0.0000
R-squared 0717870 Mean dependent var -G166.850
Adjusted R-squared 0698634 35.D. dependentvar 1843030
S E. of regression 10117.65  Akaike info criterion 21.36161
Sum squared resid 4 50E+09 Schwarz criterion 21.51754
Log likelinood -508.6785 Hannan-Quinn criter. 2142053
Durbin-Watson stat 1.664022
Inverted AR Roots BE+23i B8-23i G4+ G4 G4+ G4
23-88i 23+88i -.23-88i -23+88i
-.64- 64i -.64- 64i -88+23i -88-23i
Inverted MA Roots 99 BT+48i BT-48i B3+a4d
53-84i 06+.89i _06-99i -41+.90i
-41-.90i -T78+62i - 78-62i =97+ 220
- 07-2%i
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Autocarrelation Partial Carrelation AC PAC Q-5tat  Prob

all
/1
]
1
]
i
]

0150 0150 1.1427

0325 0310 6.6623

0194 0130 B.6788

0280 0187 13276

0198 0087 15454 0.000
0062 -0121 15674 0.000
0192 0070 17.848 0.000
-0.085 -0.209 13281 0.001
0003 -0124 18281 0.003
10 -0.014 0.034 18295 0.006
11 0050 0078 18454 0.010
12 -0.014 0.057 18466 0.018
13 -0107 -0.060 19253 0.023
14 0074 0085 19.640 0.033
15 -0.054 -0.009 19.855 0.047
16 -0.063 -0137 20152 0.064
17 -0.019 0005 20178 0.091
18 0028 0.047 20239 0123
19 0050 0085 20443 0156
20 -0.062 0003 20770 0188
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FIGURE 4: CORRELOGRAM OF SARIMA (0,0,1)X(1,1, 1);2 MODEL RESDIDUALS

» Series: Residuals
— Sample 2009M01 2012M12
Observations 48

—— Mean 1279.979
Median 3454.597
Maximum 19823.19
Minimum -26573.32

Std. Dev. 9703.586
Skewness -0.593900
Kurtosis 3.210167

Jarque-Bera 2.910078

,_l - I_I "7'_] Probability 0.233391

|

-20000 -10600 0 10000 20000
FIGURE 5. HISTOGRAM OF SARIMA (0, 0, 1)X(1, 1, 1);2 RESIDUALS
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Reference to this paper should be made as follows. E. H. Etuk. ef a/ (2014), Modelling Rivers State
Monthly Allocation by Seasonal Box-Jenkins Methods. J. of Physical Science and Innovation, Vol. 6,
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