THE EFFECT OF COR ON THE RISER REACTOR PERFORMANCE OF THE FCCU

Yousuo Digieneni

Department of Chemical Engineering, Niger Delta University, Yenagoa, Bayelsa State of Nigeria **E-mail.** digieneniyousuo@yahoo.com;

ABSTRACT: A review on the Fluid catalytic cracking unit (FCCU) catalyst system was carried out. The riser reactor was stimulated using COMSOL Multiphysics computational fluid dynamics (CFD) software. The extra fine mesh generator of the COMSOL Multiphysics software was used to produce grid refinement in the riser reactor. The effect of catalyst oil ratio (COR) on riser reactor yields were studied. The results showed that the gasoline yield increases with the increasing COR, hold up of catalyst (1- ϵ) increased with increase of COR and so for all investigated input catalyst temperature the increase of hold up can lead to higher conversion and pressure drop. A maximum on gasoline yield appears when COR is 7 making gasoline yield going up to almost 52%. A minimum on coke yield appears when COR is 5 making coke yield up to 2%.

Keywords: CFD, COR, Cyclone, FCCU, Simulation Received for Publication on 28 April 2016 and Accepted in Final Form 5 May 2016

INTRODUCTION

The FCCU cracking catalysts have undergone many evolutionary Changes. Milestones in cracking catalyst development are listed in table 1.0. Today's FCC catalyst system is a complex mixture of functional components. The main component is the catalyst itself, containing Y-zeolite, which provides the primary cracking function. Other components currently include the following.

i. Combustion promoter: Combustion promoters are used to reduce CO emissions and after burn in FCC regenerators.

- *ii.* **ZSM-5 additive.** The ZSM-5 increases octane and light olefins yields ^[2].
- iii. Desulfurization additives. Desulfurization additives promote oxidation of SO_2 to SO_3 in the regenerator, and adsorption of SO₃ onto alumina. which is then transferred to the riser. SO_3 is reduced in the riser and catalyst stripper to H_2S , which

is latter recovered in the gas plant

- iv. Zeolite content. There has been a steady increase in zeolite content of FCC catalyst – from 10% in the 1960s to over 35% today
- v. Zeolite type. There are many derivatives of Y-zeolitebasically they are $Na_{56}[SiO_2]_{136}[AlO_2]_{56}.250H_2O$. These are made by changing synthesis conditions, treatment steps, and exchange agents.
- *vi. Rare earth.* Elements help increase the hydrothermal stability and activity of the catalyst.
- *vii. Active alumina.* Alumina type, pore size distribution, and matrix surface area are important. Amorphous

METHODOLOGY

The Riser Kinetic Model

The modelling is based on the schematic flow diagram of the Port Harcourt Refinery Company (PHRC) fluid catalytic crackingg unit (FCCU) reactor presented in Figure 1 and the PHRC FCCU riser reactor in Figure 2. Figure 1 shows that The FCCU reactor consists of the riser alumina was the active ingredient in cracking catalysts prior to the introduction of zeolites. While increasing bottoms conversion, amorphous alumina increases coke and gas yields.

Table	1.0. Milestones in	Cracking Catalyst
	Development	t ^[1] .

	▲
Year	Development
1942	Natural clay
1948	Microspheroidal catalyst (low alumina)
1955	Synthetic catalyst (high alumina)
1961	TCC bed catalyst (REX Zeolite)
1964	Spray-dried fluid X and Y zeolites
1974	CO combustion promoter (pt)
1975	Ni passivation additive (Sb)
1980	Coke selective Re-H-Y
1983	SO _x transfer additives
1984	Octane additive (ZSM 5)
1985	Y- zeolite improvements for low coke
	selectivity and higher octane.
1986-	Y-zeolites
Date	

reactor, reactor catalyst stripper, reactor separator or disengager, reactor cyclones and other auxiliary parts. Figure 1 shows among other things the boundaries of the FCCU riser reactor. The riser reactor is 33m long and the diameter is 0.8m. The ten lumps kinetic model was considered. The details of the ten lumps kinetic model are found elsewhere^[7].

The Effect of COR on the Riser Reactor Performance of the FCCU

Figure 1. The PHRC FCC Reactor

Figure 2. The PHRC FCC Riser Reactor

The Model Equations

The reactor model is an ideal plug-flow reactor, described by the mass balance in equation (1). Assuming constant reactor cross section and flow velocity, the species concentration gradient as fraction of residence time (τ) is given in equation (2). The reaction rates are given by

 $r_f = K_j C_i$ and to account for the different time scales, two different activity functions are used. For the non-coking reactions the activity function is given in equation (3).

$$\frac{dF_i}{dV} = \sum_j V_{ij} r_j = R_i \tag{1}$$

$$\frac{dF_i}{dV} = \frac{d(VC_i)}{dV} = \frac{dC_i}{d\tau} = R_i$$
(2)
$$a = e^{-k_d C_c}$$
(3)

The reaction rates are modified by the activity according to equation (4). For the coking reactions, the activity function is given by equation (5) where α is a deactivation constant depending on the residence time. The modified reaction rates are given by equation (6). The coke content is given by equation (7) and equation (8). The values of *a*, *b*, φ and α are obtained from literatures ^[5, 3, 6]. They are expressed as shown in equation (9) and (10) respectively.

$$r_f = aK_jC_i$$
 $j = 1,2,3,4,5,6,7,8,13,14,15$

$$\boldsymbol{b} = \boldsymbol{e}^{-\boldsymbol{\psi}t} = \boldsymbol{e}^{-\boldsymbol{\alpha}t} \tag{5}$$

 $r_f = bK_iC_i$

$$j = 9,10,11,12,16,17,18,19,20$$
 (6)

$$C_c = 2.43 \times 10^{-3} t_c^{0.2} \tag{7}$$

$$Q(C_c) = \frac{1}{1 + 69.47(100C_c)^{3.8}}$$
(8)

$$\phi = \exp(-\alpha t_c) \tag{9}$$

$$\alpha = \alpha_0 \exp\left(\frac{-E}{RT}\right) \tag{10}$$

For the mass transport, the inlet and outlet concentrations are obtained from equation (11) and the velocity and pressure for ideal gases are obtained from equation (12) and (13) respectively. The static head of catalyst in the riser can be calculated using equation (14). The details on chosing the void fraction variable, assumed gas velocity, slip factor and the vapourisation heat of the feed in the riser inlet are shown elsewhere [5, 6].

Inlet:
$$c = c_{in}$$
, Outlet: $c = c_{out}$ (11)

$$v = \frac{R_s T}{p} \Sigma F_i \tag{12}$$

$$p = R_g T \sum C_i \tag{13}$$

$$-\frac{dp}{dz} = \rho_{cat} g. (1 - \varepsilon) \tag{14}$$

For momentum transport, the inlet and outlet pressure are obtained from equation (15)

$$p = p_{in} - \rho_{cat} g(1 - \varepsilon)(z - z_0)$$
⁽¹⁵⁾

For energy balance, neglecting pressure drop, the energy balance for an ideal reacting gas, as well as an incompressible reacting liquid is given by equation (16) and (17). The inlet temperature is calculated putting into consideration the energy balance of the components. Equation (18) is used in calculating the inlet temperature while equation (19) is used for calculating the outlet temperature.

$$\sum_{i} M_{i}C_{p,i} \frac{dT}{dV} = w_{s} + Q + Q_{ext}$$
(16)

$$Q = -\sum_{j} H_{j} r_{j} \tag{17}$$

At $z = z_0 = 0$, $w_s = 0$, $Q_{ext} = 0$, equation (16) and (17) becomes $\sum_i M_i C_{p,i} \frac{dT}{dV} - Q = 0$ This implies that

$$M_{cat}.Cp_{cat}.(T - T_{cat}) + M_{go}.Cp_{go}^{l}.(T_{vap} - T_{go}) + M_{go}.Cp_{go}^{v}.(T - T_{vap}) + M_{go}.\Delta H_{vap} + M_{ds}.CP_{ds}.(T - T_{ds}) = 0$$

That is

$$T_{0} = \frac{(M_{cat}Cp_{cat}T_{cat}) - (M_{GO}Cpl_{GO}(T_{vap} - T_{GO})) + (M_{GO}Cpv_{GO}T_{vap}) - (M_{GO}\Delta H_{vap}) - (M_{ds}Cp_{ds}T_{ds}) - (M_{ds}Cp_{ds}T_{ds}) - (M_{ds}Cp_{ds}T_{ds}) - (M_{ds}Cp_{ds}T_{ds}) - (M_{ds}Cp_{ds}) - (M_{ds}Cp_$$

At z = h or z, $w_s = 0$, $Q_{ext} = 0$, equation (16) and (17) becomes

$$\sum_{i} M_{i}C_{p,i} \frac{dT}{dV} = Q$$

That is,
$$\sum_{i} M_{i}C_{p,i} \frac{dT}{dV} = -\sum_{j} H_{j}r_{j}$$

This implies that $T_{z} - T_{0} = -\frac{\sum_{j} H_{j}r_{j}}{\sum_{i} M_{i}c_{p_{i}}} dv = -\frac{\sum_{j} H_{j}r_{j}}{\sum_{i} M_{i}c_{p_{i}}} (\pi D)(z - z_{0})$

That is, $T_z = T_0 - \frac{\pi D \sum_j H_j r_j}{\sum_i M_i C_{p_i}} z$ By our correlation $T_z = T_0 - \frac{\pi D \sum_j H_j r_j}{\sum_i M_i C_{p_i}} z$ is

 $T_z = T_0 - 0.55 * z$ or $T_0 - 7.7 * t^0.35$ hence

Outlet: $T = T_z = T_0 - 7.7 * t^0.35$ (19)

Boundary Conditions

The boundary conditions for the riser reactor are shown in table 2.

Table 2. Boundary Conditions

	SETTINGS	ETTINGS BOUNDARY BOUNDARY		BOUNDARIES	
		3	4	1 and 2	
	Temperature				
	Boundary	Inlet	outlet	wall	
	type Boundary condition	Temperature	Temperature	Thermal insulation	
	Value	T_0	T_n	-	
	Concentration	n			
	Boundary	Inlet	outlet	wall	
	type				
	Boundary condition	Concentration	Concentration	Insulation/Symmetry	
	Value	c _{in} for all species	c _{out} for all species	-	
T_{a}	s)VéloSity and j	pressure			
	Boundary type	Inlet	outlet	wall	
	Boundary condition	Velocity	Pressurre, no viscous stress	No slip	
	Value	$w_0 = v_s, u_o = v_0 = 0$	$P_0 = P-n$	-	

MATERIALS

The average molecular weights, the thermodynamic properties of the feed, the plant operating conditions and the properties of the catalyst used in this study, the specific heat of different lumps and the kinetic parameters for cracking reactions are shown in table 3 to 7 and others are found elsewhere [4, 5, 3].

Table 3. Riser Dimensions

	Length (m)	Diameter ((m)
Riser reactor	33	0.8

Table 4. Average Molecular Weight andHeat Capacities ^[3]

	-	
Species	MW (kg/kmol)	Cp (kJ/kg.K)
Gas oil	333.0	2.67(liquid),
Casolina	1067	2.2 (Gas)
Gasonne	100.7	3.3
Light gases	40.0	3.3
Coke	14.4	1.087
Steam	18.0	1.9
Catalyst	N/A	1.087

Table 5. Thermodynamic Properties of the Feed

Gas	oil	vaporiza	ation	698K	2	
tempe	rature					
Viscosity of gas			1.4	х	10-3	
				N.S/n	12	
Gas	oil	enthalpy	of	1901	kJ/kg	
vapou	risation	1				

 Table 6. PHRC Plant Operating Conditions

 [4]

Feed rate (kg/s)	30.87
Feed Quality (API)	D1298
COR (kg/kg)	7.04
Inlet pressure (kPa)	221
Feed temperature (K)	505
Catalyst inlet temperature (K)	1004
Steam (wt%)	5
Steam temperature (K)	464
Catalyst density (kg m–3)	840
Gas density (kg m-3)	5.3
Gas velocity (m sec-1)	2.5

 Table 7. Kinetic Data for the Cracking Reactions [5]

Cracking	Activation	Freequency	Rate at	Molecular
Reaction	energy	factor (hr-	538°C	weight of
	(kJ/mol)	1)	(hr-1)	cracking
				lump
HFO to	60.7086	1.422 x	1760.4	380
LFO		10 ⁷		
HFO to	23.0274	1.026 x	3380.4	380
gasoline		10 ⁵		
HFO to	73.269	3.704 x10 ⁷	712.8	380
coke				
LFO to	23.0274	8.215 x	2707.2	255
gasoline		10^{4}		
LFO to	73.269	1.852 x	356.4	255
coke		10 ⁷		
Gasoline	41.868	$8.555 \mathrm{X10^4}$	172.8	120
to coke				
Gas oil to	68.2495	7.978 x	39.364	380
gasoline		10 ⁵		
Gas oil to	89.2164	4.549 x	9.749	380

gas		10^{6}			
Gas oil to	64.5750	3.765	х	6.012	380
coke		10^{4}			
Gasoline	52.7184	3.255	х	2.470	120
to gas		10^{3}			
Gasoline	115.4580	7.957	х	1.364	120
to coke		10 ¹			

Mesh Generation and Simulation

The extra fine mesh generator of the COMSOL Multiphysics software was used to produce grid refinement in the riser reactor. The riser reactor was meshed into 77,358 triangular elements. Figure 3 shows the computational grid used to represent the computational domain of the riser reactor. The simulations in this work used the 3-dimensional model of the COMSOL multiphysics CFD software in a windows vistaTM Home Premium; model. HP Pavilion dv 6500 Notebook PC. Processor: Intel (R) Core(TM)2 Duo CPU T5450 @ 1.66GHz - 1.67GHz, Memory (Ram): 250GB and System type: 32-bit operatin system.

RESULTS AND DISCUSSION

The Effect of the COR on the Riser Reactor Performance

The catalyst oil ratio (COR) is very important parameter in FCC process. The gasoline yield increases with the increasing COR (Figure 3.0). Hold up of catalyst $(1-\varepsilon)$ increased with increase of COR, so for all investigated input catalyst temperature (Figure 4.0), the increase of hold up can lead to higher conversion and pressure drop (Figure 5.0).

Figure 3.0. The Effect of Catalyst Oil Ratio (COR) on Yield.

Figure 4.0. The Effect of Changing Inlet Temperature on Yield

Figure 5.0. The Riser Pressure Versus Catalyst Oil Ratio (COR)

Number 1, 2016

Figures 6.0 and 7.0 are 3-D graphics of the impact of variations of COR on FCC yields. The ten lump model is used in order to illustrate our results for a heavy gasoil. The effect of catalyst oil ratio

(COR) on gasoline yield is given in figure 6.0. A maximum on gasoline yield appears when COR is 7 making gasoline yield going up to almost 52%.

Figure 6.0. Effect of Catalyst Oil Ratio (COR) on Gasoline Yields

Figure 7.0 shows the effect of catalyst oil ratio on coke yield. At COR of 7, Coke $(C_1 - C_4 + \text{coke})$ yield is 15% by weight. That is C_1 - C_4 yield is 7.5% by weight

and coke yield is 7.5% by weight. A minimum on Coke yield appears when COR is 5 making coke yield up to 2%.

Figure 7.0. Effect of Catalyst Oil Ratio (COR) on Coke Yields

CONCLUSION

The FCCU riser reactor has been simulated using COMSOL Multiphysics CFD software. The effect of catalyst oil ratio (COR) on riser reactor yields were studied. The results showed that COR affects the yield of gasoline, coke and other cracked products. The results also revealed that the gasoline yield increases with the increasing COR, hold up of catalyst $(1-\varepsilon)$ increased with increase of COR and so for all investigated input catalyst temperature the increase of hold up can lead to higher conversion and pressure drop. A maximum on gasoline yield appears when COR is 7 making gasoline yield going up to almost 52%. A minimum on Coke yield appears when COR is 5 making coke yield up to 2%.

Nomenclature

The nomenclature is given in table 8.

Table 8.	Nomenci	lature
----------	---------	--------

c:	Concentration, mol/m3	Mass flow rate	of catalyst, kg/s
E:	Activation energy for rate	P _{in} :	Inlet pressure, pa
	constant, J/mol	מ	
g:	Acceleration due to gravity, m/s2	$Rg(\boldsymbol{K}_{u})$	Gas constant, J/(mol.K)
P: The pre	ssure of gases, pa	Tou:	Temperature of the catalyst.
R, r:	Rate expression value	ĸ	
T:	Tempersature, K	e.	Void fraction
t, τ:	Residence time, s	т.	Temperature of gas oil K
v:	Volume, m ³	т _{го} . Т	Gas oil vanourization
z:	Axial distance from the inlet, m	• vap-	temperature K
CP_cat	(Cpcat): Specific heat of catalyst,		Outlat valogity, m/s
J/kgK		V0: T.	Tamparatura of the steam K
Cp_ds(Cp _{ds}):Specific heat of steam, J/kgK		Ids.	Designmentation of the stealin, K
CpL_GO (CPL	go): Specific heat of liquid gas oil,	V_R, v, V :	Reactor volume, m

J/kgK	Ws: Additional work term
CpV_GO (CPVgo): Specific heat of gaseous gas oil,	Q: Heat due to chemical
J/kgK	reaction, J/m ³ .s
C _i : Species molar concentrations, mol/m ³	Qext: Heat added to the system,
cin: Inlet concentration, mol/m ³	J/m ³ .s
cout: Outlet concentration, mol/m3	μ: Viscosity, N.S/m ²
K _d : Deactivation constant	ρ: Density, Kg/m ³
M_go (Mgo): Mass flow rate of gas oil,	Ψ: Slip fact
kg/s	Subscripts
M_ds (M _{ds}): Mass flow rate of steam, kg/s	j: Refers to lump j that is
	cracked
	i: Refers to lump i that is
	formed
	p (or s): Particle/solid
	a (or f): Air/fluid
	cat: Catalyst
	c: Coke content

Table 8. Nomenclature

c: Concentration, mol/m ³		M_cat (M_{cat}): Mass flow rate of catalyst, kg/s
E: Activation ene	rgy for rate	P _{in:} Inlet pressure, pa
constant, J/mo	1	Rg (R_u): Gas constant, J/(mol.K)
g: Acceleration d	ue to gravity, m/s ²	T _{cat} : Temperature of the catalyst, K
P: The pressure of	f gases, pa	ε: Void fraction
R, r: Rate expressio	n value	T _{go} : Temperature of gas oil, K
T: Tempersature,	K	T _{vap} : Gas oil vapourization temperature, K
t, τ: Residence time	e, s	$v_{0:}$ Outlet velocity, m/s
v: Volume, m ³		T _{ds} : Temperature of the steam, K
z: Axial distance	from the inlet, m	V_R, v, V : Reactor volume, m ³
CP_cat (Cp _{cat}):Specific heat of catalyst,		W _{s:} Additional work term
J/kgK		Q: Heat due to chemical reaction, J/m^3 .s
Cp_ds(Cp _{ds}):Specific heat of steam, J/kgK		$Q_{\text{ext:}}$ Heat added to the system, J/m ³ .s
CpL_GO (CP ^L go): Specific heat of liquid		μ : Viscosity, N.S/m ²
gas oil, J/kgK		ρ : Density, Kg/m ³
CpV_GO (CP ^V go): Specific heat of gaseous		Ψ: Slip fact
gas oil, J/kgK		<u>Subscripts</u>
$C_{i:}$ Species molar concentrations, mol/m ³		j: Refers to lump j that is cracked
c _{in:} Inlet concentra	tion, mol/m ³	i: Refers to lump i that is formed
c _{out:} Outlet concent	ration, mol/m ³	p (or s): Particle/solid
K _d : Deactivation constant		a (or f): Air/fluid
M_go (M_{go}): Mass flow rate of gas oil, kg/s		cat: Catalyst
M_ds (M_{ds}): Mass flow rate of steam, kg/s		c: Coke content

REFERENCES

1. Amos A.A., Frederick J.K., Hartley O.

and Paul H.S., 1990. FCC Closed-Cyclone System Eliminates Post-Riser Cracking, Oil & Gas Journal. 100.

 Awayssa O., Al-Yassir N., Aitani A., AL-Khattaf S., 2014. Modified HZSM-5 as FCC

> Additive for Enhancing Light Olefins Yield from Catalytic Cracking of VGO", Applied Catalyst A: general 477: 172

3. Jafar S.A., Amir F., and Khaled F., 2008.

A Mathematical Modeling of the Riser Reactor in Industrial FCC Unit, Petroleum and Coal 50 (2): 15.

4.PHRC Project, Nigerian National

Petroleum Corporation Process, 12th June 1987, Project No. 9465A– Area 3 FCCU 16: 1.

5. Rajkumar G., Vineet K., Srivastava

V.K.,2005. Modeling and Simulation of Fluid Catalytic Cracking Unit. Reviews in Chemical Engineering, 21 (2): 95..

6.Yousuo D, 2014. Application of

COMSOL Multiphysics in the Simulation of the Fluid Catalytic Cracking Riser Reactor and Cyclones", PhD Thesis, Department of Chemical Engineering, University of Benin, Benin City, Nigeria.

7. Yousuo D. And Ogbeide S.E., 2015.

Comparative Study of Differentt Kinetic Lumps Model in the Fluid Catalytic Cracking Unit Using COMSOL Multiphysics, Petroleum

Science and Technology, DOI:10.1080/10916466.2014.95 8237. [Online].Available

Http://dx.doi'org/10.1080/109164 66.2014.958237 33 (2): 159. **Reference** to this paper should be made as follows. Yousuo Digieneni (2016), The Effect of COR on the Riser Reactor Performance of the FCCU. *J. of Engineering and Applied Scientific Research*, Vol. 8, No. 1, Pp. 30 – 41.