THE DETERMINATION OF ASPARTATE AND ALANINE AMINOTRANSFERASE ACTIVITY IN WISTAR RATS FED WITH MODIFIED DIET OF EDIBLE BLACK CARICA PAPAYA L. SEEDS

1P. I. Imoesi, 1L. Edemhanria, 2F. A. Esekheigbe and 3K. Okoyomoh
1Department of Chemical Sciences (Biochemistry), Samuel Adegboyega University, Ogwa, Edo State, Nigeria.
2Department of Biochemistry, Faculty of Natural Sciences, Ambrose Ali University, Ekpoma, Edo State, Nigeria.
3Department of Biochemistry, Faculty of Science, Ahmadu Bello University, Zaria, Nigeria.
E-mail: imoesi.peter@yahoo.co.uk.

ABSTRACT
In recent times, research done on Carica papaya seeds has shown its nutritive and medicinal benefits without resort to possible side effect. However, studies have shown that the consumption of C. papaya seeds causes vascular contraction, infertility in female rats, reduced sperm counts, sperm cell degeneration and abortifacient properties. This study was designed to determine the enzyme assay level of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in the serum of wistar rats fed with modified diet of C. papaya milled seeds to ascertain possible hepatic or myocardia defect. A total of 15 wistar rats were divided into two groups comprising of test (8) and control (7) respectively. The test group were fed with modified diet of edible black C. papaya seeds and the control group with grower’s marsh feed for a period of 9 weeks. The determination of aspartate aminotransferase activity showed the Mean ± SEM of aspartate aminotransferase activity in the serum of the test group as 0.38±0.03 and the control group 0.19±0.10 respectively. Subsequently, alanine aminotransferase activity from the obtained test and control groups showed the Mean ± SEM of alanine aminotransferase activity in the serum as 0.86±0.02 and 1.25±0.03 respectively. Furthermore, there is a significant (P<0.05) difference between the control and test group based on the level of aspartate and alanine aminotransferase activity in the serum. In summary, transaminases are usually used in the diagnosis of liver damage and myocardia infarction. Therefore, the increase level of aspartate and alanine aminotransferase in the serum of Wistar Strain albino rats may suggest possible damage of hepatocyte cardiac muscles associated with the consumption of diet modified fed with C. papaya seeds.

Keywords: Carica papaya seed, Aspartate Aminotransferase, Alanine Aminotransferase, Medicinal Benefits, Myocardia Infarction, Hepatocellular Damage.
INTRODUCTION

Pawpaw (Carica papaya L.) is a widely consumed fruit in most West Africa countries especially Nigeria. Its medicinal usefulness has made it a relevant plant among herbal practitioners (Purseglove, 1985). This interesting fruit originated from Central America with both female and male plants existing separately (Purseglove, 1985). To reveal the freshly edible black seeds in the hallowed part of the fruit, C. papaya is cut opened. The edible black seed contains basically, benzyl-isothiocyanate (BITC), cyanogenes, carpaine and nicotine (Marfo, Oke & Afolabi, 1986). Though, different varieties of the edible black C. papaya seeds contain different percentage of oil. The Florida variety of the black seed contains 25.3% oil and Senegal variety with 28.8% oil respectively (Marfo, Oke & Afolabi, 1998; Marfo, Oke & Afolabi, 1986). Furthermore, the oil is made up of 70.7% unsaturated fatty acids and protein content of the defatted seed 44.4% (Marfo, Oke & Afolabi, 1986).

More importantly, BITC present in the crushed C. papaya seed is believed to possess anti-helminthnic intestinal parasites (Godin & Spensley, 1971). In spite of the medicinal benefits of BITC on helminthnic intestinal parasites, BITC has shown to possess negative effect on vascular contraction using canine carotid artery in in vitro model (Chinoy, Joshi & Ghosh, 1997). Furthermore, rat feeding trial with the crushed edible black seed of C. papaya has shown to cause enlarged liver and kidney impairment, a possible indication that the oil may contain toxic components (Chinoy, Joshi & Ghosh, 1997). Subsequently, the oral administration of C. papaya seed extract inhibits ovum fertilisation, reduced sperm cell count, sperm cell degeneration and induced testicular cell lesion (Lohiya et al., 1992; Chinoy & Padman, 1996). This observation further revealed the ability of C. papaya seed extract via oral administration as a potent male contraceptive drug for pharmaceutical industries (Lohiya et al., 1992). Furthermore, aqueous extracts (1mg/Kg body weight for 7 or 15 days) given orally stimulates infertility and irregular oestrous cycle in female Wistar Strain rats (Oderinde, 1998). The consumption of C. papaya fruits is widely believed to potentiate harmful properties capable of altering pregnancy associated with its abortifacient function (Purseglove, 1985; Lohiya et.al., 1992).

In spite of the medical degenerative effect of C. papaya, quite a number of its medical efficacy has been established. The oil extract from the black seeds may improve the viability of industries in countries where C. papaya is cultivated for papain production (Marfo, Oke & Afolabi, 1998). Equally, air-dried seeds administered orally, decreases dirofilaria immitis infection (Godin & Spensley, 1971; Marfo, Oke & Afolabi, 1998). Subsequently, the seed possesses anti-
inflammatory and analgesic effect, hence a possible treatment against stomach-ache and fungal infections (Ghany & Hoofnagle, 2005). More significantly, the black edible seeds possess sharp spicy taste and most often used as substitute for black pepper (Chinoy & Padman, 1996; Godin & Spensley, 1971). Based on the above remarkable benefits and possible side effects of C. papaya seeds, this study was aimed at investigating the possible side effect on the consumption of edible-black seeds of C. papaya through the determination of transaminase enzyme (aspartate and alanine aminotransferase) activities in wistar strain albino rats.

MATERIALS AND METHODS

Chemicals
Alanine and aspartate aminotransferase kits were product of Randox Laboratories Ltd. United Kingdom. Distilled water was obtained from Biochemistry Laboratory, Ambrose Alli University, Ekpoma, Edo State, Nigeria. Other chemicals used in the course of the research were of analytical grade from legitimate companies.

Sample Collection
The pawpaw was purchased in large quantity from Ohie Market, Uromi, Esan-North East Local Government Area, Edo State, Nigeria. The fruit was identified at the Herbarium Unit, Department of Botany, Faculty of Natural Sciences, Ambrose Alli University, Ekpoma, Edo State, Nigeria. The seeds were obtained through hand scrape from the opened fruit and dried with candescnet bulb for 48hours before milling.

Feeds
The rats were fed through out the duration of study with grower's marsh purchased from a local distributor manufactured by Top Feed Ltd, Sapele, Delta State, Nigeria.

Experimental Animals
A total of 15 Male and Female Wistar Strain albino rats weighing between 100-150g were purchased from Physiology Department, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria. The animals were reared following approval from the Independent Ethical Committee on the Use and Care of Laboratory Animals of Ambrose Alli University, Ekpoma, Edo State, Nigeria.
Experimental Design
The rats were housed in standard cages, and fed with grower's marsh with portable drinking water for 10 days during the period of acclimatization. The rats were further grouped into two groups; group A: eight (8) tests and group B: seven (7) controls respectively. The control group were fed with grower's marsh and the test group were fed with modified milled C. papaya seeds (10g of milled C. papaya seeds to 90g of grower's marsh forming 100g of feed formation). Subsequently, 200g of the formulated feed was administered daily for 9 weeks and the leftover collected each day and weighed to ascertain the actual grams of feed consumed.

Assay Methods
At the end of 9 weeks, the rats were anaesthetised using a desiccator containing chloroform. The two groups were dissected and blood samples collected through cardiac puncture to sample containers without anticoagulant. Subsequently, the blood samples were centrifuged for 10 minutes at 3,000 g force and the serum was obtained from the whole blood using micropipette.

Determination of Aspartate Aminotransferase (AST) and Alanine Aminotransferase (ALT)
Spectrophotometric method was used for the assay of aspartate and alanine aminotransferase (Reitman & Frankel, 1957) with slight modification. 100μl (0.1ml) of the serum was added into test tubes with 500μl (0.5ml) of reagent 1 (buffer). The mixture was incubated for 30 minutes at 37°C. Subsequently, 500μl (0.5ml) of reagent 2 (2, 4- dinitrophenylhydrazine) was added and kept for 20 minutes at 25°C. The reaction was terminated with the addition of 5000μl (5.0ml) of 0.4Mol/L NaOH to the mixture. The blank was prepared with 500μl (0.5ml) of reagent 1 and 0.1μl (100μl) of distilled water. The absorbance was read at 546nm.

Statistical Analysis
Results were presented as mean ± standard error of mean (SEM), ANOVA was carried out using the statistical software package SPSS for Windows (version 16). Finally the results were subjected to the t- distribution table at the corresponding degree of freedom (P<0.05) to detect any significant difference between the Test and Control group respectively.
RESULTS
A total of 15 Male and Female Wistar Strain albino rats (8 as test and 7 as control) were used for the experimental analysis and the results showed a significant (P<0.05) difference between the alanine aminotransferase activity of the control and test rats Table 1. Furthermore, a significant (P<0.05) difference between aspartate aminotransferase activity was observed in the control and test group respectively Table 2.

Table 1: The Determination of Alanine Aminotransferase Activity (μl) in Control and Test Group of Wistar Strain Albino Rats.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Alanine aminotransferase (μl)</th>
<th>Alanine aminotransferase (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Test</td>
</tr>
<tr>
<td>1</td>
<td>0.16</td>
<td>0.74</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.65</td>
</tr>
<tr>
<td>3</td>
<td>0.45</td>
<td>0.36</td>
</tr>
<tr>
<td>4</td>
<td>0.13</td>
<td>0.99</td>
</tr>
<tr>
<td>5</td>
<td>0.12</td>
<td>0.45</td>
</tr>
<tr>
<td>6</td>
<td>0.08</td>
<td>0.66</td>
</tr>
<tr>
<td>7</td>
<td>0.54</td>
<td>0.58</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>0.98</td>
</tr>
<tr>
<td>Mean ± SEM</td>
<td>0.25±0.03</td>
<td>0.68±0.02</td>
</tr>
</tbody>
</table>

Values presented are Means ± SEM of triplicate determination. (n=8).

Table 2: The Determination of Aspartate Aminotransferase activity (μl) in Control and Test Group of Wistar Strain Albino Rats.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Aspartate aminotransferase (μl)</th>
<th>Aspartate aminotransferase (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Test</td>
</tr>
<tr>
<td>1</td>
<td>0.23</td>
<td>0.30</td>
</tr>
<tr>
<td>2</td>
<td>0.28</td>
<td>0.36</td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>0.18</td>
<td>0.58</td>
</tr>
<tr>
<td>5</td>
<td>0.19</td>
<td>0.34</td>
</tr>
<tr>
<td>6</td>
<td>0.24</td>
<td>0.29</td>
</tr>
<tr>
<td>7</td>
<td>0.06</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>0.25</td>
</tr>
<tr>
<td>Mean ± SEM</td>
<td>0.19±0.10</td>
<td>0.38±0.03</td>
</tr>
</tbody>
</table>

Values presented are Means ± SEM of triplicate determination. (n=8).
DISCUSSION
The transfer of α-amino group of amino acids to α-keto acid is the basic role of transaminase enzymes (Marguerite, 2002). Transaminase enzymes usually are localised to all organs especially, the liver and heart respectively (Cheesbrough, 1998). Furthermore, low/high level of aspartate and alanine aminotransferase in the serum or plasma, serves as biomarker for hepatocellular or myocardia impairment (Cheesbrough, 1998). Subsequently, accelerated cell death, virus infections, hepatitis, necrosis and liver cirrhosis often leads to high level of transaminase enzymes in the bloodstream (Venkateshwarlu, Dileep, Rakesh & Sandhya, 2013). The significant increase in aspartate aminotransferase (AST) is usually associated with myocardia infarction with slight elevation in alanine aminotransferase (ALT) (Nelson & Cox, 2000). Conversely; hepatocellular disruption elevates both ALT and AST; however, high level of ALT activity is commonly observed in the liver compared with AST (Nelson & Cox, 2000).

The assay study of transaminase enzyme activities (aspartate and alanine aminotransferase) of wistar rats fed with diet modified feed of C. papaya milled edible black seeds showed a significant (P<0.05) difference in both enzyme activities Table 1 and Table 2. The increase level of alanine and aspartate aminotransferase in the serum is usually based on conditions associated with injuries or diseases affecting the liver or heart leading to the release of hepatocellular enzymes into the bloodstream (Nelson & Cox, 2000). Further studies on ripe C. papaya seeds as shown mild ballooning necrosis of hepatocytes linked with prolonged dose and hepatocyte disruption due to carpaine (Paul & Ligha, 2015). This further justifies cytotoxicity of C. papaya seed owing to benzyl-isothiocyanate (BITC) serving as bacteriostatic, bacteriocidal and fungicidal (Paul & Ligha, 2015). The detoxification of BITC in the liver may potentiate hepatotoxic effect translating to hepatocellular impairment (Paul & Ligha, 2015; Hasim, Govardhan, Vengaiah & Changamma, 2013).

Furthermore, the test group justified the abortifacient properties of C. papaya seed associated with its ability to cause infertility, irregular oestrous cycle, reduced sperm cell count, sperm degeneration and induced testicular cell lesion (Chinoy, Patel & Chawala, 1997; Lohiya et al., 1992; Oderinde, 1998). In similar report, C. papaya seed extract is shown to cause antifertility, anti-implantation and abortifacient properties (Chinoy, Dilip & Harsha, 2006). Similarly, unfermented extract of C. papaya seeds at high dose of 150mg/Kg is reported to cause reduced palatability, treatment-induced anorexia or systemic toxicity (Abdulazeez et al., 2009). A comparative observation based on the feeding
pattern between the test and control group further justifies C. Papaya seed with the ability to induce anorexic symptom as observed with the test group. Conversely, the high level of fertility observed with the control group potentiates the medicinal relevance of C. papaya seeds as potential drug in the development of male contraceptive (Harsha, Joshi & Chinoy, 1996).

The slight significant increase in alanine aminotransferase activity Table 1 between the control and test group suggest possible hepatic or other body organ damage. Concurrently, C. papaya seed is known to induce mild to severe metaplasia of hepatocytes, proliferation of kupffer cells, hepatic cell cirrhosis and elevation of serum hepatic enzymes (Dikibo et al., 2012). Similar research with rat fed with C. Papaya seed over a period of 3weeks (acute) and 6 weeks (chronic) presented hepatic damage on histological observation. These hepatic damage ranges from hepatic infarction, pkynosis and eosinophilic cells with cellular degeneration based on increased dose and prolonged ingestion of C. papaya seed extract (Dikibo et al., 2012).

Simultaneously, a significant increase in aspartate aminotransferase activity is observed in the serum of the test group compared with the control group Table 2. Consequently, the notable increase in the level of aspartate aminotransferase activity in the serum (Test group Table2) indicates possible cardiac and skeletal muscle damages (Ghani & Hoofnagle, 2005). Previous studies on rat feeding trials as demonstrated the possible role of C. papaya seeds as causative agent of enlarged liver, kidney and heart impairment (Paul & Ligha, 2015; Dikibo et al., 2012). Photomicrograph of liver of albino rats fed with C. papaya seed extracts expressed mild ballooning, necrosis of hepatocytes (2weeks). Extended trial for a period of three weeks further expressed enlarged central veins and marked generalised ballooning necrosis of hepatocytes impairment (Paul & Ligha, 2015).

In contrast to rat feeding trials, C. papaya seed powder showed high mortality in fingerling Tilapia Oreochromis niloticus at LC50 (9hours) (Shreeja, Thadani & Salunke, 2014; Hasim et al., 2013). Similar research with admissible toxicant concentration of 0.018mg/L- 0.18mg/L of pawpaw seeds to tilapia showed observable erratic swimming, loss of reflex, moulting, discoloration, air gulping, loss of scale and haemorrhage directly proportional to increase in aqueous extract of pawpaw seed concentration (Ayotunde & Ofem, 2008). Further studies on leaf extract of C. papaya showed toxicological effect on the liver of Sprague Dawley rats with significant elevation of liver enzymes (AST, ALT and alkaline phosphatase) (Adlin et al., 2012).
Contrary to the high level of toxicological effect and severe damage of C. papaya seeds on organs and tissues, other reports has shown the anti-hyperglycaemic potential on rats induced with streptozotocin (Venkateshwarlu et.al., 2013). Subsequently, studies on biochemical parameters such as total protein, HDL-cholesterol, AST, ALT and ALP showed elevated activity in non-dose dependent manner. In spite of the elevated increase in the above biochemical parameters, histopathological examination of organs specifically the liver revealed no morphological alteration (Adlin et al., 2012).

Generally, BITC has shown to have negative effect on vascular contraction using a canine carotid artery in vitro model (Chinoy, Joshi & Ghosh, 1997). In spite of the quantity of the milled C. papaya seed (10g) to 90g of grower’s marsh feed in the formulated feed, a significant increase of transaminase enzymes was observed in the serum of the test group. However, the direct consumption of C. papaya seed may pose severe health risk such as liver, heart and kidney impairment.

CONCLUSION
This study showed the health implication of C. papaya consumption through the determination of transaminase enzyme activities in the serum of albino rats. The significant level of aspartate and alanine aminotransferase in the serum suggest high level of liver and heart damage. It is clearly seen that the use of C. papaya seed as a medicinal herb may present potential health risks compared to its medicinal benefits. However, other parameters such as haematological indices, kidney function tests and total protein may be determined in future to ascertain a holistic conclusion on the effect of C. papaya seed consumption.

REFERENCES


The Determination of Aspartate and Alanine Aminotransferase activity in Wistar Rats Fed with Modified Diet of Edible Black Carica Papaya I. Seeds

P. I. Imoesi,


Biographical Notes:
P. I. Imoesi: Assistant Lecturer, Department of Chemical Sciences (Biochemistry Option), College of Basic and Applied Sciences, Samuel Adegboyega University, Ogwa-Ehor Road, Edo State. B.Sc. Biochemistry- Ambrose Alli University, Ekpoma Edo State and M.Sc. Molecular Biology from the University of Hertfordshire, England, United Kingdom.

L. Edemhanria: Assistant Lecturer, Department of Chemical Sciences (Biochemistry Option), College of Basic and Applied Sciences, Samuel Adegboyega University, Ogwa-Ehor Road, Edo State. B.Sc. Biochemistry- Ambrose Alli University, Ekpoma, Edo State and M.Sc. Biotechnology from the University of Bedfordshire, England, United Kingdom.

F. A. Esekheigbe: Senior Lecturer, Department of Biochemistry, Faculty of Natural Sciences, Ambrose Alli University, Ekpoma, Edo State. B.Sc./ M.Sc. Biochemistry- University of Benin. Ph.D. Ambrose Alli University, Ekpoma Edo State.