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ABSTRACT: In the traditional frequency domain design of an internal model controller, the 
design problem is cast in terms of 2H  and H  norms of sensitivity functions in order to 
obtain the parameters of a robust controller for an uncertain system. This requires the use of 
weights, which are often obtained in a cumbersome trial-and-error manner. In this paper, a 
computer-aided robust internal model control design method which eliminates trial-and-
error selection of weights was formulated within the context of the method of inequalities 
(MoI). Lead, lag and lead-lag networks were used as weights and the model uncertainty was 
described both in exact and norm-bounded forms. The robust stability and performance 
criteria of the feedback system were defined as a set of algebraic inequalities.  Moving 
boundaries process (MBP), a search algorithm, was used to automatically and 
simultaneously obtain the parameters of the controller and the weights which satisfy the 
performance criteria. An uncertain system from the literature was chosen to illustrate the 
new technique. The MoI-based method gave rise to internal model controller filter 
parameters which in most cases are in close agreement with the filter parameters obtained 
using the traditional trial-and-error method. Furthermore, the uncertainty weights obtained 
via the MoI-based method are of lower order in comparison with those obtained via the 
tedious trial-and-error method. It is concluded that the MoI-based method can effectively 
replace the trial-and-error method for the frequency-based design of internal model 
controller.  
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INTRODUCTION 
 The popular internal model control 
consists mainly, the controller and the 
model used in the controller design. It is 
found to be simple and practical control for 
stable and unstable plants [1]. It requires a 
few numbers of parameters for tuning for 
robustness [2]. A promising way of obtaining 
a robust internal model controller for 
uncertain systems is to cast the design 
problem within H framework. The H
framework is one of the best methods 
available today for robust control design. It 
is an effective method for attenuating noise 
and disturbances that appear in the system. 
It is designed to accomplish minima 
restriction in frequency domain [3]. It has 

been widely used to address different 
practical and theoretical problems [4]. 
However, the selection of suitable weights 
for controller design in H framework is 
not a straightforward task. Traditionally, the 
designer is required to find such suitable 
weights by a long and tedious trial-and-error 
process using his engineering experience 
and intuition [5].  This is not a trivial task, in 
that many factors such as the desired 
performance, specified robustness 
requirement and/or fundamental 
performance limitations due to plant 
dynamics, have to be considered [6]. 
  
 Several methods for selecting 
suitable weights have been proposed. 



 Frequency-based Design of Internal Model Controller Using the Method of Inequalities 
 

167 
 

Lundström et al., [7] proposed a first order 
performance weight as, 

           
Asτ
Msτ

M
1  sW

cl

cl
p 


  ……………...……  (1) 

 
Where; *

BW
1clτ  ,  

*
BW  = Approximate closed-loop 

  bandwidth,  
A =  Steady state offset upper 
  bound,  
M = Upper bound on  
  amplification of high- 
  frequency noise.  
 
 The disadvantage of this technique is 
that tedious trial-and-error attempts have to 
be made before the parameters of suitable 
weight can be found. Franchek [8] argued 
that the frequency domain specifications 
were addressed directly in the work of 
Lundstrom and Co-workers [7] while the 
influence of the system’s uncertainty on the 
transient output performance was not 
addressed. Thus, he proposed performance 
weights selection method which can directly 
enforce hard time domain constraints.  
However, Khow and Banjerdpongchai [9] 
argued that both Lundström et al., [7] and 
Franchek’s [8] approaches only provide a 
simple method of initially choosing weights 
and that the two approaches did not 
explicitly include a robust guarantee of time 
domain specifications. Hence, they 
proposed an approach for guaranteeing both 
frequency and time-domain specifications. 
However, their proposed technique still rely 
directly on the original trial-and-error 
formulation of Lundström and Co-workers 
[7]. 
 
 In order to overcome the difficulties 
of trial-and-error processes of selecting 
weights and that of the sequential design of 
weights and controllers, some systematic 
and automatic optimization algorithms 
which lead to simultaneous design of 

weights and the controllers have been 
developed (see [5, 6, 10, 11]). Lanzon’s and 
Richards’ [5] and Lanzon’s and Cantoni’s [6] 
algorithms were developed using state-space 
formulations, and as a result, may not be 
directly applicable to systems with irrational 
transfer functions; e.g., a system with time 
delay does not have state-space realization 
except the delay term is approximated [12] by 
its rational equivalent. By utilizing lead, lag 
and lead-lag networks as weights, 
Whidborne et al., [10] applied the method of 
inequalities (MoI) for the direct design of 
robust controllers such as PI/PID, linear 
quadratic Gaussian, mixed sensitivity, etc. 
Its application for the direct design of 
internal model controller has not been 
reported. Furthermore, the 
simplicity/complexity of the MoI-based 
selected weights in comparison with the 
weights selected via the traditional trial-and-
error procedures has yet to be discussed.                  
 
 This paper describes the procedures 
for designing an internal model controller 
within H framework. Here, the control 
problem is formulated within the context of 
the method of inequalities (MoI) which 
facilitates automatic and simultaneous 
design of weights and controllers 
parameters. The simplicity of the resulting 
MoI-based weights is compared with the 
weights obtained via trial-and-error method 
reported in Lundström et al.,[7] and 
Skogestad’s and Postlethwaite’s [12] works. 
The framework for incorporating model 
uncertainties both in the exact and norm-
bounded forms within the context of MoI is 
also presented.  
 
 The remainder of the paper is 
organized as follows: section 2 is concerned 
with the descriptions of various theoretical 
principles utilized in this work, section 3 is 
devoted to the description of the proposed 
method, section 4 presents the application of 
the existing trial-and-error and the proposed 
automatic method to a literature example 



Journal of Engineering and Applied Science Volume 5, 
Number 
1, 2013 

 

 168

while the results are discussed in section 5. 
Finally, relevant conclusions are drawn in 
section 6. 
 
THEORY 
Performance Weight Selection  
 In using trial-and-error approach, 
standard weights, which are selected by 
referring to the frequency-domain 
specifications: bandwidth frequency, steady-
state tracking error and maximum peak 
magnitude of sensitivity function are given 
by Skogestad and Postlethwaite [12].  They 
are as follows: first order weight is given as, 
 

        
A*

BWs

*
BWM

s
spW




 ……………………  (2) 

 
A is the upper bound,  jwpW

1  on the 

magnitude of sensitivity function,   at low 
frequencies, usually, A  1.  A is actually 
the maximum value of the allowable steady-
state error. M is the upper bound, 

 
on  

jwpW
1  at high frequencies, usually, 

M  1, *
BW  is the frequency at which 

 jwpW
1  crosses 1, and this is 

approximately the bandwidth requirement. 
In some cases, when there is need to 
improve performance, a higher-order (such 
as 2nd order) weight is proposed and is given 
by 
 

  22/1A*
BWs

2
*
BW

2/1M

s

spW





 













  … (3) 

        
 When the plant transfer function 
contains one or more of the following: RHP 
zero, RHP pole, and a pure time delay, the 
choice of Wp(s) is not just based on M, A 

and *
BW  but depends on the values of the 

zero or/and the pole or/and the time delay. 
According to Skogestad and Postlethwaite 
[12], e.g., the restrictions on the choice of 

 spW  due to the presence of RHP zero is 
given as: 
 

        zpW pW 


 …………………… (4) 

 
 Eqn. (4) must hold before the closed 
loop stability of the control system can be 
guaranteed; z is the location of RHP zero. 
For H   design, performance condition is 
defined as  
 

1pW 


   …………………………… (5) 

 
Hence,                      
 

)z(pW   <   1 ………………………….. (6) 
 
Uncertainty Region Description 
 Model uncertainty can be described 
in the exact or norm-bounded form. In the 
former, the uncertainty regions π(w),

 i
pG  are generated. Usually, they are 

complex in shapes. However, non-
conservative controllers are eventually 
obtained. In order to use this approach for 
controller design, exact region mapping 
technique [2] is utilized. In the latter, the 
uncertainties in the model are represented as 
disks; they are bounded by scalar or 
complex perturbation whose infinity norm 
must not exceed unity at all frequencies. It 
lends itself easily to mathematical 
evaluations. Using multiplicative weight, a 
family of uncertain plants is defined as  as 
follows: 
 

               sIΔsIW1sGsi
pG:Π  ……… (7) 
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 Where WI(s) is the uncertainty or 
multiplicative or relative weight; G(s) is the 
nominal model transfer function, while i

pG  
is the thi  perturbed plant and ΔI is 

normalized perturbation. Fig.1 is the 
representation of a plant with multiplicative 
uncertainty.

      
 

Figure 1: Plant with Multiplicative Uncertainty 
 
Uncertainty Weight, WI  
 Given a set  of possible perturbed 
plants i

pG due to parameter variations in the 
model, G 
 

 
   

                            Π G   w,   ,
iwG

iwGiwG
ΠGwL i

p

i
p

max
i
pI 


 …..  (8) 

 
Where iw = s, Laplace variable. Based on 
eqn. (8), a rational weight WI can be 
obtained to fit into eqn. (7). However, the 
condition below must be   satisfied: 
 

  ILiwIW   ,       w   ……………… ……………… (9) 
 
 Usually, WI is obtained in a trial-
and-error manner.  A first order weight is 
tested; if it is unsuccessful, higher order 
weights are tested [12].  A first order weight 
is given as  

     
1sr

τ

rτs
sW o

I













 ………………….… (10) 

ro is the magnitude of the relative 
uncertainty at steady-state i.e. low 
frequencies, w  0, τ

1  is the approximate 
frequency at which the relative uncertainty 
reaches 100%, and r is the magnitude of 

the weight at high frequencies (typically, r 
 2 is chosen). 
 
Lead, Lag and Lead-lag Networks 
 Rather than searching for design 
weights in a trial-and-error manner, the 
weights could be defined as standard lead, 
lag or lead-lag network whose parameters 
can be obtained using suitable automatic 
search algorithm. 
 
Phase-Lead and Phase-Lag Networks 
 Whidborne et al., [10] define a high-
pass (phase-lead) and low-pass high-gain 
(phase-lag) filters of the form         
           

 
     w       w          ,   

ws
wsw

W kj
k

ji
θ 




 … (11) 

 
 Where subscript  could be p if W is 
Wp or  = I, if W is WI. wi, wj, wk > 0. If wj 
< wk, then w is called phase-lead network 
or weight, otherwise it is called phase-lag 
network. i, j, k  could be 1, 2, 3 respectively, 
they could be  4, 5, 6 depending on the 
number of weights present in the problem.    
 
Lag-Lead Network 
 According to Distefano et al., [13], 
the lag-lead network (weight) is given by 
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equation (12), where subscript  stands for p 
in Wp and I in WI 
 

  
     wsws

wswsW
43

21
θ 


 ……………… (12)             

 
Internal Model Control (IMC) 
 IMC consist mainly the controller 
and the model used in the controller design. 
It is found to be simple and practical control 
for stable plants; however, it is also 
applicable to open-loop unstable systems [1]. 
It requires a few numbers of parameters for 
tuning for robustness [2]. According to 
Morari and Zafiriou [1], a relationship exists 
between classical feedback controller, C and 
internal model controller, q which is stated 
as follows:  

                           
Gq1
qC


  …………….………  (13) 

Fqq    ……………………….. (14) 
 
 Where filter, F = f (),  is the filter 
parameter, q  is the optimal (based on IAE 
or ISE) nominal internal model controller. 
For robustness, q  must be augmented with a 
low pass-filter, F as described in eqn. (14). 
A typical IMC configuration in a feedback 
loop is as shown in Fig. 2, where G is the 
process nominal model, Gp is the actual 
process (plant) transfer function, U is the 
manipulated input, r is the reference input, y 
is the output response and d is the 
disturbance. Interested readers should see 
references [1, 2] for further details on the 
existing IMC controller design procedures 
using H framework.

  

 
 

Figure 2: Internal Model Control Configuration 
 
Method of Inequalities (MoI) 
 MoI [10, 14, 15] is a computer-aided 
multi-objective design approach, where 
desired performances are represented by a 
set of algebraic inequalities. The aim of the 
design is to simultaneously satisfy these 
inequalities. Because of the flexibility of 
MoI, it is also applicable to single-objective 
multi-parametric problems. The design 
problem is to find vector p such that the 
inequalities 
                                            

  , iεiΦ p     i    ………………..…… (15) 
 
are satisfied εi’s are real numbers, pP and 
it is a real vector p = p(1), p (2), …….p (q)) 
chosen from a given set P; and i’s are real 
functions of p. The design goals εi’s, which 
represent the largest tolerable values of the 
objective functions i’s are chosen by the 
designer. The aim of the design is to find a 
vector p that simultaneously satisfies the set 
of the inequalities. The actual solution to the 
set of inequalities (15) may be obtained by 



 Frequency-based Design of Internal Model Controller Using the Method of Inequalities 
 

171 
 

means of numerical search algorithms.  The 
original algorithm used for solving (15) is 
known as moving boundaries process 
(MBP) (see ref. [15]). The algorithm was used in 
the work presented in this paper.  
 
Robust Stability and Performance 
Robust Stability Criterion 
 For an uncertain plant under 
feedback control, the condition for which 
the controlled system remains stable in the 
presence of all uncertainties for all the 
perturbed plants is called robust stability [12]. 
Nyquist stability criterion is found to be 
very effective. A closed-loop system is 
stable if the Nyquist plot of its open loop 
transfer function  scGpG  does not encircle 
(-1, 0) coordinate in a counter clockwise 
manner.  To ensure robust stability, 
Laughlin et al., [2] stated the condition for 
robust stability of a family П of perturbed 
plants as follows: when  scGpG  is 
represented by regions π(w)Gc(iw) at each 
frequency where  w  is the complex 
uncertainty region mapped out by all 

i
pG at each w(where    wiwi

pG  , w ), 

then no region π(w)Gc(iw) must encircle (-
1,0)  coordinate. П is the set of all perturbed 
plants, π(w)  is the uncertainty region at 
frequency, w.  The simple summary of this 
criterion is that at each frequency, the 
magnitude of  iwcGi

pG  is evaluated for all 

i
pG , and then plotted on Nyquist plane, 

and as such, Nyquist bands are obtained.  
Hence, at all frequencies, none of the 
Nyquist bands should contain, (-1, 0) 
coordinate. This is better illustrated 
graphically; e.g., in Fig.3, some of the bands 
contain (-1,0) coordinate, which indicates 
non-robust stability. 
 
 For the case when the uncertainty in 
the model is represented as norm-bounded 
type, then according to Morari and Zafiriou 
[1], by assuming that all the plants i

pG  in the 
family, П 

   
                 ,  wIW
iwG

iwGiwi
pGi

pG:i
pG



















w ,i
pG   ……………………… (16)

                                                                                                                                                        

   
Figure 3: Bands for πGc(iw) on  Nyquist  Plane 

 
The same number of RHP poles and that a 
particular controller, cG stabilizes the 
nominal plant G, then the system is robustly 
stable with controller Gc if  the 

complementary sensitivity function (s) for 
the nominal plant G satisfies the following 
bound,                        
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     1wIWηSupΔIWη 


  ………..…… (17)                         

 
Note that: For unity feedback control 
system,  

    
cGG1

cGGη


 …………………………  (18)                                         

cG  is the transfer function of the controller, 

IW  is the uncertainty weight, i
pG  is the ith 

perturbed plant, and   is the nominal 
complementary sensitivity function. 
 
Robust Performance Condition 
For eqn. (5) to be satisfied for the worst-
case plant, 
 
       i

pG  ,1iwpWsuppW 


 … (19)  

 
Must hold if the uncertainty in the model is 
described in the norm-bounded form, then 
eqn. (19) can be written in terms of WI and 
such expression is used directly to guarantee 
robust performance for all the plants. 
Therefore, according to Morari and Zafiriou 
[1], 
 

   1pWIW 


  …………………… (20) 

 
Where;   is the nominal sensitivity 
function.  
 
INTERNAL MODEL CONTROL (IMC) 
DESIGN USING MoI 
 The proposed method formulates 
frequency-based IMC design procedures 
using the method of inequalities framework. 
Given an uncertain plant pG , the steps 
below are followed: 
 

a. Using simple principles of 
permutations and combinations, all 
possible distinguished extreme 

(perturbed) plants are identified and 
defined as i

pG , i . 
 

b. IMC structure is defined; the 
controller transfer function is Fqq  . 

 
c. Obtain  ,iwCi

pG  i . C is given by eqn. 

(13), q  is obtained via the existing 
IMC design approach [1]. 
 

d. Appropriate form(s) of weight(s) is/are 
defined as lead, lag or lag-lead 
networks as described in section 2.4 
depending on the form of the 
uncertainty description (exact or 
norm-bounded) and the objective 
functions   n...........,.........1j,j,s,j  w  
are defined. 

 
 

e. Necessary performance criteria for 
optimization are defined. For exact 
region mapping, the performance 
criterion is robust performance factor 
(RPF) i.e. eqn. (19); for norm-bounded 
uncertainty representation, the criteria 
are RPF [eqn. (20)] and uncertainty 
weight factor, UWF . Also, appropriate 
stability margin sm , is defined. The 
optimization problem is set up as 
algebraic inequalities as described in 
section 2.6; RPF is infinity norm of the 
weighted sensitivity function. 
 

f. The values of the upper bounds, j’s 
on the objectives are specified. Also, 
upper bound sm  on sm  is also 
specified. Also, necessary bounds are 
placed on the parameters. 

 
g. Initial values of the parameters are 

chosen at designer’s discretion and 
hence a search algorithm such as MBP 
is implemented. If solution is found, 
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the design is accomplished, if no 
solution is found, step ‘b’ may be 
returned to, to change controller form, 
or step ‘d’ to change weights’ forms or 
orders, or step ‘f’ to change the values 
of j or sm . 

 
Comment 
 In this work, a new index, 
uncertainty weight factor, UWF is 
introduced to incorporate multiplicative 
weight into MoI framework when the 
uncertainty is described as norm-bounded 
form. From eqn. (9), 
 

       w                 ,wIL iwIW   
 
 A single factor is required to serve 
as a representative over all the frequencies 
range; rearranging the expression leads to  

 
  w ,1
iwIW
wIL

  

Let  UWF =
 
     1
iwIW
wIL




 ………… (21)                          

 This offers an advantage over the 
earlier stage-wise, graphical and trial-and-

error approach since this will be found 
numerically, automatically and 
simultaneously with the controller and 
weights’ parameters. 
 
ILLUSTRATIVE EXAMPLE 
 The existing closed loop transfer 
function shaping (CLTFS) approach when 
using IMC configuration is applied to the 
uncertain RHP-zero plant described by 
Whidborne et al., [10]. The nominal plant 
model is defined as, 
 

 sG  =
 

 1s1T2
0Ws0ξW22s

2
0W1s2TK






 


   …...... (22) 

 
Where T1 = 5, T2 = 0.4, W0 = 5,  = 0.3, K = 
1. There are three stress levels of operation 
such that the transfer function of the plant 
changes at each stress level due to 
parameters’ variations, hence the complete 
transfer function for each level is given as, 

 

 
 

 1s1T2
0Ws0ξW22s

2
0W1s2TK

spG






 









 




 




  1sδ

2T1sδ
1T2

δwsδWδξ22s

2
δW

   ….. (23) 

 
Where; 0.6δξ 15,δ W,12

1δ
2T ,8

1δ
1T   

 
The variations in the parameters at each stress level are given in Table 1.
 
Table 1: Parameters’ Variations at Each Stress Level 
Stress Level ࢀࢾ૚ ࢀࢾ૛ ࢃࢾ૙ ࢾ  ࡷࢾ 

1 ±0.20 ±0.05 ±1.50 ±0.10 ±0.00 
2 ±0.30 ±0.1 ±2.50 ±0.15 ±0.15 
3 ±0.30 ±0.15 ±3.00 ±0.15 ±0.50 

 
 The aim is to design for each stress 
level, a controller to achieve rise time as fast 
as possible, subject to the following 
conditions: 
 

a. The plant output must be within -1.5 
and +1.5 at all times, 

b. Zero steady-state tracking error, 
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c. It is preferable if the 
under/overshoot is around 0.2 most 
of the time (occasional large  

d. over/under shoots are acceptable as 
long as the output is within )5.1 , 

e. Fast settling time,  
f. Plant input saturates at -5.0 and 

+5.0.  
 
 The set-point may be pre-filtered. 
N.B: The reference input to the loop 
(control) is square-wave with period of 
20seconds. 
 
APPLICATION OF THE EXISTING 
TRIAL-AND-ERROR APPROACH 
 Here, the existing trial-and-error 
method for the design of internal model 
controller was utilized. The results would be 
compared with those obtained via the 
method of inequalities. 
 

Trial-and-Error Method When the 
Uncertainty is Described in the Exact 
Form                                                                        
The trial-and-error procedures summarized 
in Morari and Zafiriou [1] are followed: 
 

a. The process model, G is obtained as; 
 

G =  
 1s525s32s

5.2s10






 

   ………….. (24) 

b. Input Type Specification: The 
reference input in this case is square-
wave with a period of 20 seconds.      
   












20sect10    -1, r(t)
10sect  0    ,1r(t) ……………….. (25) 

 
c. The family, П of perturbed plants is 

defined: Substituting the values of 
constant parameters into eqn. (23) and 
also noting that the following 
parameters: Wo, K, T1, T2 and  are 
uncertain, 

 
 

Gp=
 

   2
00

2
01

2
10

3
1

2
2
0

WsξW2WTsTξW21sT
1sTKW21600




 21600622826813384
1

 ssss
 …  (26) 

 
 
 Using the principles of permutations 
and combinations for stress levels 1, 2, and 
3 (refer to Table 1), 24 = 16, 25 = 32 and 25 
= 32 extreme plants and their corresponding 
parameters’ values were identified. 
 

d. Design Stage: 
(i) q is obtained [1] as,  

 

q = 
 

  21s5.2s10

1s525s32s








 

   ……………… (27) 

 
(ii) Robust Stability Analysis, From eqn. 

(13), 
             

C=
 

  





 





 






 

s522s25.223s210

1s525s32s
 … (28) 

 
 Applying Nyquist stability criterion 
as discussed in section 2.7, the minimum  
required for robust stability was found as  
= 0.021, 0.31, 0.70 for stress levels 1, 2 and 
3 respectively. 
 

(iii)Robust Performance Analysis: 
 spW  was selected in a trial-and-

error manner by bearing in mind the 
bandwidth limitations due to RHP 
zero in the plant dynamics. A first 
order weight [eqn. (2)] was tested. A 
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≈ 0 and M ≈ 2.5 were used. After a 
series of trials, bandwidths ( *

BW ) 
were found for levels 1, 2 and 3 as 
0.301, 0.185 and 0.021, respectively. 
The bandwidth limitation imposed 
on  sWp  due to RHP-zero present in 
plant dynamics was found to be *

BW  
< 1.5, which holds for the 3 levels. 
The value of  was adjusted until 
expression (19) was slightly less 
than unity (maximized). For levels 1, 
2 and 3, s were found to be 0.646, 
1.00 and 1.50 respectively. 

 
Trial-and-error Method When the 
Uncertainty is Described in Norm-
Bounded Form 

(i) Robust Stability and Performance 
Analysis: In this case, satisfying 

robust performance condition 
satisfies robust stability condition 
automatically.  spW  and  sIW  were 
selected sequentially in a trial-and-
error manner.  spW  for all the 3 
levels are the same as those obtained 
in section 4.1.1. The concepts 
described in section 2.3 were utilized 
and the uncertainty weights for 
levels 1, 2, and 3 were obtained as 
follows after a series of trial-and-
error attempts. The first order 
uncertainty weight given by eqn. 
(10) or eqn.10) augmented with a 
lag-lead network was searched. The 
results are as presented in Tables 2 
through 4. Note, ’ ’ is 
multiplication sign, while ‘+’ is 
addition sign. 

  
 
Table 2: Weight, Filter Parameter and Uncertainty Weight Factor for Level 1 

 
 
  

 Exact Region 
Mapping & 
Trial- and-

error 
Approach 

Exact region 
Mapping & The 

New Method 

Norm-bounded 
Uncertainty Rep & 

Trial-and-error 
Approach 

Norm-bounded 
Uncertainty Rep. & New 

Method 

Filter 
param,  

0.646 0.632 1.02 0.99 

Wp 
s5.2

7525.0s    





 


91083.5s

62.0s4275.0  
s

s
5.2
7525.0   

 1693.1
327.05424.0




s
s  

WI - -  
 






 






 






1s42s

1s6.72s

s1994.01
s4739.00065.0

 

 
 416.3

102.0379.6



s

s  

UWF - - - 0.49 
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Table 3: Weight, Filter Parameter and Uncertainty Weight Factor for Level 2 
 

 Exact 
Region 
Mapping & 
Trial-and- 
error 
Approach 

Exact region 
Mapping  & New 
Method  

Norm-bounded 
Uncertainty Rep. & 
Trial-and-error 
Approach 

 Norm-bounded 
Uncertainty Rep. & 
New Method  

Filter 
parameter,  

1.00 1.03 1.53 1.2 

Wp 
s

s
5.2
4628.0   






 


1010698.2s

285.0s443.0  
s

s
5.2
4625.0

 
 
 3

14.0379.6



s
s  

WI - -  
 






 






 






1s32s

1s82s

s1549.01
s7634.01504.0

 

 
 3

14.0379.6



s
s  

UWF - - - 0.99 
 
 
Table 4: Weight, Filter Parameter and Uncertainty Weight Factor for Level 3 
 
 Exact 

Region 
Mapping 
Trial-and- 
error 
Approach 

Exact Region Mapping 
& New Method 

Norm-bounded 
Uncertainty Rep. Plus 
Trial-and- error 
Approach 

Norm-bounded 
Uncertainty Rep. 
Plus New Method  

Filter 
Parameter,  

1.5 1.442 1.815 1.90 

Wp 
s5.2

0525.0s    





 


9109678.2s

27075.0s3572.0  
s

s
5.2
0525.0   

 7002.8
32832.0003.1




s
s  

WI - -  
 






 






 






1s4.32s

1s5.72s

s1766.01
s4085.15003.0

 

 
 4148.3

196.06717.14



s

s  

UWF - - - 0.77 
 
 

(ii) Robust Performance Analysis: By 
applying eqn. (20),  and   was 
obtained as;  
 

  21s5.2s

5.2s




  …..………………... (29) 

 

   
  2

2232

15.2
525.22





ss

sss


   (30) 

 
Substituting    , , WI(s) and Wp(s) into  eqn. 
(20) i.e. RPF,  and the value of λ was 
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adjusted until RPF was slightly less than 
unity in magnitude, hence the search was 
terminated. At this juncture, the robust 
performance factor has been maximized and 
the values of  obtained for levels 1, 2 and 3 
are 1.02, 1.53 and 1.815 respectively. With 
these values obtained, the design was 
completed. 
 
APPLICATION OF THE NEW 
METHOD 
In this section, the reported weights’ and 
robust internal model controller’s 
parameters are obtained simultaneously and 
automatically using the method of 
inequalities.  
 
Application of the New Method When the 
Uncertainty is Described in Exact Form. 
 Following the procedures described 
in section 3, the design progressed as 
follows: 

a. Distinguished extreme plants were 
identified as done in section 1. 
 

b. The control structure, IMC was 
defined as in the preceding sections. 

 
c. Appropriate weighting function (lead, 

lag or lag-lead) was defined. Here, 
only Wp(s) was required, hence, it was 

defined as Wp(s) =     
  3s

2s1
w

ww

  

 
d. Necessary performance criteria for 

optimization were defined. Here, the 
objectives were posed as algebraic 
inequalities i.e. j(w,s) j            
       

 The main objective was RPF, 1 = 
RPF. Also, necessary stability margin was 
defined as sm<sm. Here, Nyquist bands 
(graphical approach) are not suitable for 
numerical and automatic analysis. Since 
there is a possibility of obtaining 
characteristic polynomial in this case, then, 
sm < ; sm = max (real (root (denominator 
of closed loop transfer function))). Usually, 

a small value  < 0 is chosen such as  = -
10-2. This is to ascertain that no pole of the 
denominator lies on the RHP. Here, for 
unity feedback control system, the closed 
loop transfer function is defined as 

y = Πi
pG    r,

cGi
pG1

cGi
pG




 

Therefore, 
sm = max (real (root (1+ cGi

pG ))) …  (31) 
 
Note that: Gc = C.   The RPF is the main 
objective here, utilizing eqn. (19) i.e. 
 

 i
pG      ,1PWεFRP1  

 
Sensitivity function is defined as follows 
 

)s(CpG1
1)s(


  

 
Setting s = iw, and substituting eqns. (26) 
and (28) into  (iw) as just defined above, 
 
    


 i

pGw, ,
iwCpG1

1iwε is defined 

 
Substituting Wp(s) obtained in step ‘c’ into  
 

  1spWFRP1 


  by setting s = iw, 

 
1 (w,iw) was defined ready for 
implementation by using MoI. 
 

  1iwpWFRP1 


  

e. The upper bounds were set on the i 
and on sm i.e. 1 = 1; sm = -0.01 
 

f. Initial values of  iw  i  were chosen 
by the designer.  1w , ……  3w are the 
parameters of the Wp(s) while  4w  
was set equal to  the filter parameter ; 
 iw   0. With all the necessary steps 

analyzed properly, the MBP was 



Journal of Engineering and Applied Science Volume 5, 
Number 
1, 2013 

 

 178

implemented until satisfactory solution 
was obtained i.e. when 1 was slightly 
less than unity (maximized) and

01.0smθ  . The results obtained are 
reported in Tables 2 through 4. 

 
Application of the New Method When the 
Uncertainty is Described in Norm-
Bounded Form 

(a) Here, two weights are required; they 
are Wp(s) and WI(s).  The proposed 
weights are  

 
Wp(s) =     

  3s
2s1

w
ww


  and WI(s) =     

  6s
5s4

w
ww


  

 
(b) All necessary optimization criteria 

were defined as in section 4.1.1(d) 
with the inclusion of UWF, 2 as 
stated below: from eqn. (21), 

 
 
  


 i

pG     ,1
sIW

wIL
FUW2  

 
 Using eqn. (8), by substituting eqns. 
(24) and (26) for G and Gi

p respectively, LI 
(w) was defined. Substituting WI(s) and LI 
into 2 and setting s = iw in 2 (w, s), 
 

   
  1
iwIW
wIL

FUWiw,2 


 w …… (32) 

 
Where; 
 w = [  1w ,  2w ,….  7w ]. w(1)……w(6) 
are the parameters of the weights, while 
w(7) is the filter parameter,    
 

(c) Having defined the objectives, j’s 
were specified i.e. 1 = 1, 2 = 1 and 
sm = -0.01. 
 

(d) Initial values of w(i)’s were chosen at 
the designer discretion and MBP was 
used to search for the satisfactory 
parameters. 

The results obtained are, as reported in 
Table 2 through 4. 
 
RESULTS AND DISCUSSION   
 Based on H  design formalism, 
robust internal model controllers were 
designed for an uncertain system which was 
subjected to square-wave input at three 
different stress levels. Both the existing 
trial-and-error procedure and the proposed 
automatic approach, the method of 
inequalities (MoI) were applied. Model 
uncertainty was incorporated into the design 
in exact and norm-bounded forms.  
 
 The results-filter parameter (), 
weights (Wp and WI) and the uncertainty 
weight factor (UWF), are as reported in 
Tables 2, 3 and 4. Across all the three stress 
levels, for both the trial-and-error and the 
new methods,  values when the model 
uncertainty is described in the exact form 
are lower than when the uncertainty is 
described in the norm-bounded form. This 
should be expected, as the norm-bounded 
uncertainty description is a conservative 
approach.  Most of the filter parameters 
obtained from the new method are in close 
agreement with those obtained from the 
existing tedious, trial-and-error method. 
This indicates that the former can 
effectively replace the latter. The 
uncertainty weights obtained from the new 
method are simple lag and lead (1st order 
networks), as opposed to 3rd order networks 
obtained from the existing tedious approach. 
The uncertainty weight factor (UWF) is less 
than 1 at all levels and this satisfies the 
condition stated in eqn. (21). This 
demonstrates that the tedious graphical trial-
and-error approach of deriving uncertainty 
weight in the existing technique can be by-
passed since only the numerical value of 
UWF, which is obtained automatically 
guarantees satisfactory uncertainty weight in 
the new method. 
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CONCLUSIONS 
 This study developed a frequency-
based framework for designing robust 
internal model controller using the 
combination of H formalism and the 
method of inequalities (MoI). The use of 
MoI facilitated automatic and simultaneous 
design of robust controller and simple 1st 

order uncertainty weights. This is opposed 
to the existing trial-and-error method which 
resulted in 3rd order uncertainty weights. It 
is therefore concluded that MoI can 
successfully replace the previous tedious 
graphical trial-and-error approach used in 
the design of robust internal model 
controller within H  framework.
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