Adoption of Oil Palm Production Technologies in Ihiala Local Government Area of Anambra State, Nigeria.

*ISIBOR, A.C. AND **UGWUMBA, C.O.A.

*Department of Agricultural Economics and Extension, Anambra State University, Anambra State, Nigeria. **Department of Agricultural Economics and Extension, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. E-mail: <u>chinweann@yahoo.com</u>

ABSTRACT

The study specifically examined level of adoption, determinants and constraints to the adoption of palm production technologies by palm farmers in Ihiala Local Government Area of Anambra State, Nigeria. Purposive and simple random sampling techniques were respectively used to select five communities from the local government area and 50 oil palm farmers from the five selected communities for the study. Copies of structured interviewed instrument were administered to the respondents for data collection. Descriptive statistics and logistics regression were used in analyzing the data. Highest level of adoption (76%) of the oil palm production technologies was achieved with ring weeding technology, while use of fertilizer scored 62% to become the least adopted production technology. Level of adoption was statistically, significant and positively determined by membership of social organization, farm size, educational level and annual farm income. The greatest constraints to level of adoption of oil palm production technologies were high cost of the technologies and lack of finance. The provision of subsides and financial supports, as best suggested solutions to the problems faced by the farmers, would enable purchase of the technologies and improve their levels of adoption.

Keyword: Oil Palm Production Technology, Oil Palm Farmers, Adoption Level, Extension Workers.

Introduction

One of the major challenges facing developing countries in the tropics is the production of sufficient food for their large population. It is estimated that of the 1.2 billion hungry and poor people of the world, over 800 million suffer from chronic under nourishment. Out of this, 34 million live in Asia while 186 million live in sub-Saharan Africa.^[1]

Adoption of Oil Palm Production Technologies in Ihiala Local Government Area of Anambra State, Nigeria.

In Nigeria, the agricultural sector has failed to perform its assigned roles effectively. This has manifested in reduced agricultural and staple foods for the nation's teeming population. Oil palm is an important cash crop, and Nigeria is the largest producer in Africa and third largest producer in the world. Although the contribution of the oil palm industry to the Gross Domestic Product (GDP) in Nigeria has declined as a role in the economy of Nigeria.^[2]

In Nigeria, the oil palm industry provides palm oil for household direct consumption and palm kernels for industrial use. It provides employment for about 4 million people who are in various oil palm related businesses such as palm oil, palm kernel oil production, palm wine tapping and bottling, basket and wholesale/ retail trade in the various product of the oil palm.^[3]

Improved oil palm production technologies that are capable of raising productivity of the farmers include ring weeding, use of extension work seed, pruning, intercropping, fertilizer application, wire collar, disease/pest control methods, and use of cover crops, poly bag nursery establishment, harvesting techniques, plantation/field establishment and so on ^{[4-9].} The role of extension service in getting improved technologies to farmers cannot be overemphasized. The purpose of training and visit (T&V) system of agricultural extension service is to assist farmers to raise production and increase their income and to provide appropriate support for agricultural development.¹⁰ Extension agents play the role of disseminating these technologies to farmers.^[11]

Ejembi *et al.*^[12] reported that socio-economic characteristic of farmers such as age, farming experience; educational level, etc affect adoption of technologies. Asiabaka *et al.*^[13] expressed the view that, for farmers of different agricultural zones to adopt a new agricultural technology, they must be aware of the technology, have valid and up-to-date information on the technology, the applicability of the technology to their system and receive the technical assistance necessary for application of the technology. This therefore, points to the importance of socio-economic characteristics of farmers in the adoption of improved technologies. Determining the influence of these factors on the adoption of improved oil palm production technologies will be useful in formulating adequate policies that will assist the farmers to improve and sustain production.

Oil palm producers in the study area have adopted various modern production technologies including ring weeding, improved seedlings, pruning, intercropping, alley farming, fertilizer application and so on to raise their productivity, output, income and hence welfare.^[14&15] Despite the adoption efforts of the producers, optimal productivity and adoption levels of technologies are yet to be achieved due to the existence of certain constrains to adoption of technologies such as limited fund, scarcity and high cost of inputs, diseases and pest attacks among others,^[15] hence this study which aimed at assessing the levels of adoption of improved production technologies among small holder oil palm farmers in the area; determining the influence of socio-economic characteristic of the oil palm farmers on level of adoption of the technologies; and identifying constraints to adoption of the technologies.

Materials and Methods

The study was carried out in Ihiala Local Government Area (LGA) of Anambra State, South East of Nigeria. The Local Government Area is made up of autonomous communities which include Ihiala (headquarters) Amorka, Azia, Lilu, Okija, Iseke, Orsumogho, Mbosi, Ubuluisuzor and Uli. It has a population size of 87,796 person and has between longitude of 6° 85' North and latitude 5° 85' East. Average annual rainfall and temperature are 350mm and 28°C respectively. The major crops cultivated in the area are yam, cassava, oil palm, vegetable, and cocoyam.

Two stage and simple random sampling techniques were used to select respondents for the study. Stage one was the purposive selection of five communities- Okija, Orsumogho, Iseke, Ubuluisuzor and Uli. This selection was based on the baseline survey of oil palm producers done by agriculture/officer on the area and which indicated the five selected communities as hosts to the highest members of oil palm farmers. The second stage was random selection of the oil palm farmers from each of the selected communities to get 50 respondents.

Data were collected through the administration of pre-tested interview instruments. Data were collected on socio-economic characteristics of the respondents, improved oil palm production technologies in the area, and constraints to adoption of the technologies. Data on constraints to adoption of the technologies were collected by means of a 4- point likert scale, ranging from 4 = very serious, 3 = moderately serious, and 1 = not serious, with a critical mean of 2.5(i.e. 10/4 = 2.5).

Data analyses were facilitated by means of descriptive statistics- mean frequency distribution and percentage- for level of adoption, mean ranking for

Adoption of Oil Palm Production Technologies in Ihiala Local Government Area of Anambra State, Nigeria.

constraints to adoption and logistic regression for determinants of level of adoption of the modern production technologies.

The logistic regression model is represented explicitly by taking as a probability, P and making its logarithm to depend linearly on the dependent variables. The probability is expressed by Pindyck and Rubinfeld as:

$$Prob(Y_1 = 1) f(Z_1) = \frac{1}{i - e^{Z_1}} = \frac{e^{Z_1}}{e^{Z_1} + 1}$$

Where;

- Z1 = Theoretical variable (observable variable). To obtain the value of
 Z1, the likelihood of observing the sample needs to be formed by
 introducing a dichotomous response variable Y1 such that:
- Y₁ = (1 if the 1th farmer is high adopter of oil palm technologies; 0 if the 1th farmer is a low adopter of oil palm technologies).

For this study $Z_1 = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_8 X_8 + e$

Z_1 $X_1(MSO)$ $X_2(AGE)$ X_3 (FME) $X_4(FAS)$ $X_5(EDL)$ $X_5(EDL)$ $X_6(CEA)$ $X_7(HOS)$ $X_8(AFI)$	= = = = = = =	Cumulative logistic distribution Membership of social organization (dummy: member =1; 0) Farmers' age (years) Farming experience (years) Farm size (hectares) Educational attainment (years of schooling) Contact with extension agent (number of contacts) Household size (number in the household) Annual farm income (N) Pegression coefficients
β1	=	Regression coefficients
βo	=	Constant term
e	=	Error term

Result and Discussion

Levels of Adoption of the Oil Palm Production Technologies

Result of analysis of levels of adoption of the production technologies for oil palm as shown in Table 1 indicated that ring weeding was the most adopted technology(76%), closely followed by use of poly bag(74%), harvesting knife(70%), sprouted seed(68%), cover crop(64%), and the least, use of

fertilizer(62%). Use of fertilizer came last probably quantities that would have enabled enhanced adoption.

Technology	Level of Adoption		
	Frequency	Percentage	
Use of poly bag	38	74	
Sprouted seed	35	68	
Ring weeding	38	76	
Cover crop	33	64	
Harvesting knife	34	70	
Fertilizer	31	62	

Table 1: Levels of Adoption of	of the Oil Palm Productio	n Technologies
--------------------------------	---------------------------	----------------

Source: Field Survey, 2013.

Note: Multiple Responses Recorded

Effects of socio-economic factors of the respondents on level of adoption: the binomial logistic regression was used to ascertain the effects of socioeconomic factors of the oil palm producers on level of adoption of the production technologies. Result of the analysis (table 2 showed that out of the eight independent variables namely membership of social organization represented by (MSO), age (AGE), farming experience (FAE), farm size (FAS), educational level (EDL), contact with extension agents (CEA), household size (HOS) and annual farm income (AFI), four (membership of social organization, farm size, educational level and annual farm income) were positive and statistically significant determinants of level of adoption of oil palm production technologies in the area.

The implications of these findings is that as farmers' income increases, likewise their awareness of modern technologies through higher education, more likely their acquisition and utilization of modern production technologies. Again, farmers who own large farms are more likely to belong to cooperative/social organizations so as to grasp any opportunity to acquire new knowledge, skills and modern technologies that would enable them increase their productivity, income and good livelihood.

The chi-squared value of 18.784 was significant at 1% level, an indication of the overall significant and goodness of fit of the model. The significant log likelihood function's value (49.943) also confirmed the goodness of fit of the model and that the independent variable together had statistical and significant influence on level of adoption of oil palm production technologies in the area.

Adoption of Oil Palm Production Technologies in Ihiala Local Government Area of Anambra State, Nigeria.

Technologies Parameter	Coefficient	T-value	Probability
Constant	-5.3798	-1.974	0.075
MSO	0.0069	1.998**	0.034
AGE	0.4634	0.786	0.532
FME	-0.0576	-0.693	0.428
FAS	0.0054	2.124**	0.016
EDL	0.0011	1.932**	0.025
CEA	-0.0263	-0.476	0.662
HOS	0.4336	0.843	0.634
AFI	0.0884	1.876*	0.019
Log likelihood function		47.943	
Restricted log likelihood		68.135	
Chi-square		18.784	
Degree of freedom		8	

Table 2: Determinants of Level of Adoption of the Oil Palm Production

Sources: Field survey, 2012. Notes:

** = Significant at 1% level.

* = Significant at 5% level of probability.

Constraints to Adoption of Oil Palm Production Technologies

Table 3 shows result of mean ranking of constraints associated with the use of oil palm production technologies. The study identified high cost of technologies with a mean score of 2.74 as the most serious constraint to adoption of the technologies by the farmers. This was followed by lack of funds with a mean score of 2.72 scarcity of land (2.42), lack of information on the technologies (2.40), and poor extension visits (2.30). In many circumstances the development of sustainable productivity requires the purchase of necessary inputs which on the other hand requires the ability of funds. Consequently lack of funds posed major constraint to purchase of the technologies hence the achievement of the optimal levels of adoption.

Mean Score	Rank				
2.74	1 st				
2.72	2 nd				
2.42	3 rd				
2.40	4 th				
2.30	5 th				
	Mean Score 2.74 2.72 2.42 2.40				

Table 3: Constraints to Adoption of the Oil Palm Production Technology

Source: Field Survey, 2013

Conclusion and Recommendation

Oil palm farmers in Ihiala Local Government Area of Anambra State, Nigeria have adopted modern production technologies for their operations. The existing adoption gaps for the technologies would be closed if appropriate measures are taken to address the problems of fund found to have seriously militated against the adoption process. Such measures as review of the land use policy in favour of making more farms tends available for the establishment of large scale oil palm plantations. Subsidizing farm inputs such as fertilizer and agro chemicals to reduce cost of the technologies and encourage their adoption and mounting of awareness campaigns on the advantages of adopting the technologies by expanding extension services and providing logistic support to extension agents to facilitate their jobs.

References

- 1. K.I. Nwosu. Agricultural Rebirth for Improved Production in Nigeria. *Proceedings of the 39th Annual Conference of the Agricultural Society of Nigeria.* University of Benin Nigeria, 2005, Oct 9-13, 17-23).
- 2. R.S. Idechaba, A.S.K. Ebonni, Arch Patel and D. Singn, Managing Agricultural Extension in Nigeria. Proceeding of the National Workshop on Agricultural Extension 1985, 85-102).
- 3. U. Omoti, The Future of the Oil Palm Industry in Africa and Strategies for Development: The Nigeria Situation. Paper Prepared for the African Development Bank (ADB) Workshop on the Future of Oil Palm Industries in Africa and Strategies for Development, Cote D'Ivoire, 2001.
- J.E. Njoku, Factors Influencing Adoption of Oil Palm Production Technologies by Small Holders in Imo State of Nigeria. In J.O. Olukosi, A.O. Ogungbile and B.A. Kalu (Eds), Appropriate Agricultural Technologies for Resource Poor Farmers, 1991, 207-218).
- A.J. Omoike, Impact of Nigerian Institution for Oil Palm Research (NIFOR) Extension Activities on Oil Palm Production in Ovia North East Local Government Area of Edo State. B.Sc Project Ambrose Alli University, Ekpoma, 2005.
- 6. A.E. Agwu, Adoption of Improved Oil Palm Production and Processing Technologies in Arochukwu Local Government Area of Abia State, Nigeria.

Journal of Tropical Agriculture, Food, Environment and Extension, 2006, 5 (1): 26-35.

- 7. National Institute of Oil Palm Research (NIFOR), A Manual on Oil Palm Production. NIFOR Publication, 2003.
- 8. R.A. Eseigbe R.K. Ench and T. Jose, An Adoption Study of Agronomic Cultural Husbandry Practices for Oil Palm Cultivation in NIFOR. *Nigerian Journal of Palm and Oil Seeds*, 2007, 16, 13-22.
- 9. C.A. Ojemade, The Economics of Adoption of Some Recommended Oil Palm Production Technologies in Ethiope West Local Government Area of Delta state. M.Sc. Theses, University of Nigeria Nsukka, 2008.
- 10. Benor and M. Baxter, Training and Visits Extension. A World Bank Publication, 1984.
- 11. A.C. Agumagu and O.W Nwogwugwu, Extension Agents Commitment to Extension Work in Abia and Rivers State, Nigeria. Global Approaches to Extension Practices, 2006, 2(1): 50-59.
- Amaechi, C.C.E., A.J. Mbanaso and O.O. Ukoha (2006). Determinants of Profitability of Small Holder Palm Oil Mill Enterprise in Imo state, Nigeria. Processing of the 40th Annual Conference as the Agricultural Society of Nigeria (ASN), Abia (2006).

References to this paper should be made as follows: Isibor, A.C. and Ugwumba, C.O.A. (2014), Adoption of Oil Palm Production Technologies in Ihiala Local Government Area of Anambra state, Nigeria. *J. of Agriculture and Veterinary Sciences,* Vol. 6, No. 2, Pp. 1 - 8.