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ABSTRACT 
This study describes the approach of Gaussian Naïve Bayes (GNB) as 

a prior distribution classifier in a two-class (dichotomous) 

classification of the posterior probability of the dependent variable 

( , 0,1/ )i iP Y i X in a Bayesian logistic regression.   This approach 

establishes the procedure for parameter estimation of Bayesian 

logistic regression when we could not ascertained whether the prior 

distribution is informative or non-informative. The Newton-Raphson 

iterative procedure was used in estimating the vector parameters 

because there was no closed-form solution due to non-linearity of 

the logistic function. This study was applied to four set of panaceas 

drugs on diarrhea treatment for babies less than a year old (Nigeria 

Demographic Health Survey (NDHS, 2013)). It was noted that the 

standard errors of parameters estimated via Bayesian logistic 

regression using the GNB were lower than that of standard errors 

of parameters estimated via the Classical Logistic Regression (CLR) 

using the Maximum Likelihood Estimation (MLE), which makes 

Bayesian logistic regression via GNB better than CLR. 

 

Keywords: Gaussian Naïve Bayes, Bayesian Logistic Regression, 

Maximum Likelihood Estimation, Posterior Distribution, Prior 

Distribution.

 

INTRODUCTION 

Prior distribution is a key part 

of a Bayesian framework that 

represents the information 

about some uncertain 

Parameter (s) that when 

combined with the probability 

distribution of the data yields 

the posterior distribution 
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which is used for future 

references and decisions 

involving those parameter(s) 

(Andrew, 2002). Andrew 

(2006) noted that some key 

issues coming up on prior 

distribution are what 

information is going into the 

prior distribution and the 

properties of the resulting 

posterior distribution.  There 

are different strategies used 

in assigning prior distributions 

to different parameter(s) in a 

model. These strategies 

collectively refer to the 

information going into prior 

distribution. This information, 

in turn, is bifurcated into: Non-

informative (objective) and 

Informative (subjective) priors 

(Dana et al. 2010). Non-

informative priors are used in a 

setting where scientific 

objectivity is paramount.  

 

In other words, Non-

informative priors are used in a 

Bayesian framework to deal 

with complex multi-dimensional 

models or multi-dimensional 

posterior probability 

distributions. Andrew (2006) 

affirmed the point made by 

(Zeng, 2002) that non-

informative priors are 

restricted to distributions 

such as Inverse-gamma, 

uniform distribution, Walshart 

distribution and Jeffrey’s rule. 

However, Andrew (2006) 

claimed that non-informative 

prior distribution seemed to be 

positively biased whenever the 

lower limit of the range of 

these distributions made 

mentioned are less than four. 

Based on this, some Bayesian 

analysts concluded that non-

informative priors might be 

misleading, diffuse and vague 

(Robert et al. 1996), (Mu Zhu, 

2004) and (Ulrich, 2012).  

 

The informative priors, on the 

other hand, avow that analysis 

is based on something more 

than the data in hand whose 

importance to the parameters 

of interest is modeled through 

the likelihood. The point we are 

making is that Informative 

priors make use of the pre-

knowledge of distribution that 

the data follows. Mark et al. 
(2011) affirmed that 

informative priors are based on 

the pre-knowledge about the 

substantive problem based on 

the data along with elicited 
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expert opinion if possible, to 

construct a prior distribution 

that properly reflects the 

researcher’s beliefs on about 

the unknown parameter(s). 

They were of the notion that 

informative priors may seemly 

over subjected and 

unscientific. Now, the 

informative prior is also sub-

divided into conjugate and non-

conjugate priors.  The former 

arises when the likelihood 

times the prior distribution 

produces a recognizable 

posterior kernel of the same 

form with the prior 

distribution whilst reverse is 

for the later. In conclusion, 

there seems to be no clear-cut 

whether the objective 

approach is better-off the 

subjective or vice versa.    

 

LITERATURE REVIEW 

Logistic regression model has 

been widely used in modeling, 

inter alia, biostatistics data, 

epidemiological data, and 

biometric data. Greenland 

(2006) opined that parameters 

in logistic regression analysis 

that are usually carried out 

using the classical approach via 

Maximum likelihood Estimation 

(MLE) are founded on the 

bases of randomization and 

random sampling such that its 

usage in observational  studies 

is questioned. He advocated 

and urged that Bayesian 

logistic regression is more 

appropriate for studies 

wherein the procedures used in 

generating the samples and 

data do not follow 

randomization. In a similar vein, 

Wioletta (2015), in his work, 

juxtaposed the credible 

interval derived from the 

posterior means and the mean 

gotten from the descriptive 

statistics to conclude that 

Bayesian confidence regions 

yielded information on the 

range of the changes of 

estimated parameters with 

probability of 0.95.  

 

Also, that informative prior do 

result in significant reduction 

of highest posterior density 

region compared to non-

informative prior. On his part, 

Tom (2005) designed learning 

algorithms based on 

understanding of probability 

distribution of discrete values 
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for a dependent variable given 

some set of conditional 

independent variables. His work 

was mainly on conditional 

independence of covariates on 

dependent variable given an 

interaction variable using 

Baye’s rule. However, his work 

failed to model a two-class of 

dependent variable to some set 

of covariates.  Chia-chung 

(2004) assumed Gaussian 

distribution as an informative 

prior in Bayesian Inference in 

Binomial Logistic Regression as 

a case study of the 2002 

Taipei Mayoral Election. He 

narrowed his work down to 

fitting a binary logistic 

regression model with the 

observed data using lay down 

Gaussian distribution as an 

informative prior without 

challenging the theoretical 

buildup. Hee et al. (2013) came 

up with a theoretical 

framework called Polya-Gamma 

Gibbs Sampler for Bayesian 

logistic regression.According to 

them, Polya-Gamma Gibbs 

Sampler was uniformly ergodic 

for Bayesian probit regression. 

In a similar vein, Bosabella et 

al. (2014) used “vague 

informative prior” in Bayesian 

Logistic Regression Analysis of 

the Association of Intimate 

Partner Violence and Modern 

Contraceptive use in the 

Philippines. Like Bosabella et al. 
(2014), Andrea et al. (2014) in 

their work came up with 

penalized likelihood with 

Gaussian distribution, log-

normal distribution or Log-F as 

the informative prior 

distribution in estimating 

parameters in the posterior 

distribution of the logistic 

regression.  They claimed that 

the three prior distributions 

are symmetric, and unimodal, 

and that log-normal prior was 

equivalent to the Odd Ratio 

(OR)  scale while that of  the 

log-F priors are more flexible 

than normal priors and useful 

when priors are directional. 

Based on these non-

conformities and 

aforementioned short falls in 

both the non-informative and 

informative, and that no clear 

distinction whether one is 

better than the other, we are 

of the impression that a robust 

naïve prior distribution needs 

to be incorporated to 

neutralize the hiatus of range 

of value limitation in non-
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informative priors, and the 

task of the researcher having 

the pre-knowledge of the 

source of the data and 

parameter(s) to be estimated, 

a full range of prior 

distribution that can 

accommodate all real number 

values needed to be proposed 

to abridge the lacuna between 

informative and non-

informative prior. So, a 

theoretical framework of 

Gaussian distribution as a naïve 

prior distribution using Baye’s 

rule, that is Gaussian Bayes 

Naïve (GNB) will be used in this 

research work.    

 

METHODOLOGY 

Classical Logistic Regression 

Logistic regression is an 

approach for constraining a 

discrete response variable to a 

well-defined vector of a 

discrete or continuous 

covariates, that is, 

: ( / )rf X Y or P Y X , where iY , 

the response variable is a 

member of the exponential 

family gotten from the binomial 

distribution. For a two-class 

classification problem of the 

response variable (Binary 

Logistic Regression), , 0,1iY i    

the conditional probability 

mass function of Y will be 

either  1/P Y X or  0 /P Y X , 

(Brian, 2012). 

Suppose , 0,1iY i   denoted a set 

of responses of a binary 

outcome variable of Y , and iX  

are the vector of the 

corresponding covariates of a 

specified dimension say “p”. 

Then the binary logistic 

regression model from 

Generalized Linear Model 

(GLM) can be specified as: 

 
0 1 1 2 2i i p pY X X X         

      (1) 

' '

1 2 1 2( , , , ), ( , , )p pX X X X       

whereX is the design matrix of xp p ,   is a 1 by p regression 

coefficients 
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The link function ( )ig u which transforms the response variable 

 i iE Y   to linear predictor 

0 1 1 2 2( )i i p pg X X X              

    (2) 

 The link function of Bernoulli distribution known to be 

( ) log
1

i
i

i

g





 
  

   
 

 So, Inverting the link function,  

 1 1

0 1 1 2 2( )i i p pg g X X X                 (3) 

1
ii

i

e






,  1 i

i i e
   , i i

i ie e
    i i

i ie e
    , 

1

i

i
i

e

e




 


 

 Since, 
0 1 1 2 2i p pX X X          

0 1 1 2 2

0 1 1 2 21

p p

p p

X X X

i X X X

e

e

   

   


   

   


  
for 0,1i         (4) 

 

Bayesian Logistic Regression 

using Gaussian Naïve Bayes 

The Gaussian Naïve Bayes 

(GNB) classifier for the 

conditional probability for  

 /P Y X  is adopted. Let the 

response variable , 0,1iY i   be a 

Boolean governed by a Bernoulli 

distributed with parameter 

 1/for P Y X   and 

 1 0/for P Y X   for each 

covariates iX , 

   / ,i k i iP X Y y u  for
i jX and X

that are conditional 

independently given Y such that

i j for each i and j such that 

the standard deviations vary 

but do not depend on Y(Brian, 

2012).   The conditional 

probability (posterior 

distribution) from the GNB 

assumptions is derived using 

Baye’s rule as follows: 

 
   

   
1

. /
( / )

. /

i i

i n

i i

i

P Y P X Y
P Y X

P Y P X Y





        (5) 

For , 0,1iY i  ;  
   

       

1 . / 1
1/

1 . / 1 0 . / 0

P Y P X Y
P Y X

P Y P X Y P Y P X Y

 
 

    
  (6) 
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Dividing both the numerator and denominator by     1 . / 1P Y P X Y   

 

   
   

       
   

1 . / 1

1 . / 1
1/

1 / 1 0 / 0

1 . / 1

P Y P X Y

P Y P X Y
P Y X

P Y P X Y P Y P X Y

P Y P X Y

 

 
 

    

 

    (7) 

 
   
   

   
   

1
1/

1 / 1 0 . / 0

1 / 1 1 / 1

P Y X
P Y P X Y P Y P X Y

P Y P X Y P Y P X Y

 
   


   

  (8) 

 
   
   

1
1/

0 . / 0
1

1 . / 1

P Y X
P Y P X Y

P Y P X Y

 
 


 

     (9) 

 
    
   

0 . / 0
ln

1 . / 1

1
1/

1

P Y P X Y

P Y P X Y

P Y X

e

  
 

   

 



      (10) 

 
 

 

 

 

0 / 0
ln

1 / 1

1
1/

1

P Y P X Y
x

P Y P X Y

P Y X

e

  
 

   

 



      (11) 

 
 

 

 

 

ln / 00
ln

1 ln / 1

1
1/

1

i

i
i

P X YP Y

P Y P X Y

P Y X

e

 
 

   

 




     (12) 

 
 
 

1
1/

/ 01
1 ln ln

/ 1

i

i
i

P Y X
P X Y

e
P X Y





 
 

  
 



 (13) 

 

It is to be noted that 1
ln





 
 
 

 is the inverse of the link function. 

The final expression  1P Y  is in terms of the binomial parameter . 

Considering the summation in the denominator in equation (13) and 

given our assumption of GNB that  /i kP X Y y is Gaussian, we expand 

as follows: 

 

 

 

 

2

0

2

2

1

2

2

2

2

2

1

/ 0 2
ln ln

/ 1
1

2

i i

i

i i

i

X

i

i i X
i

xp
P X Y

P X Y

xp















  
 
 
 

  
 
 
 

 
 
 

  
  

 
  

   
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                                =

 

 

2

0

2

2

0

2

2

2

2

2

1
ln . 2

2

i i

i

i i

i

X

i X

xp

xp















  
 
 
 

  
 
 
 

  

                                   = 

   
2 2

1 0

2

ln

i i i i

i

X X

i
xp

 





    
   
 
 
   

                                   =
   2 2 2 2

1 1 0 0

2

2 2

2

i i i i i i i i

i
i

X X X X   



    
  

                                   = 
 2 2 2 2

1 1 0 0 0

2

2 2

2

i i i i i i i i

i
i

X X X X   



    
  

                                   =   2 2

0 1 1 0

2

2

2

i i i i i

i
i

X    



   
 
 

  

                                  = 
  2

0 1 1

2 22

i i i i

i
i i

X  

 

 
 

 
 (14) 

 

Equation (14) is called linear weighted sum of the '

iX s . Substituting 

equation (14) back in equation (13). 

 
2 2

0 1 1 0

2 2

1
1/

1
1 exp ln

2
i i i i

ii
i i

P Y X

X
   

  

 
   

    
  



 

                                    For   
2 2

0 1 1 0
02 2

1
, ln

2

i i i i
i i

i i

w w
   

  

 
    

Then,   

 

0

1

1
1/

1 exp
n

i i

i

P Y X

w w X


 
 

  
 


,  

where 1 2, , , nw w w  are weights, then 

   1/ T

iP Y X W X   

   0/ 1 T

iP Y X W X  

 
Where (.) is the logistic sigmoid function defined by 

1
( )

1 exp( )
a

a
 

 
   (15)
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Parameter Estimation for the Bayesian Logistic Regression using 

Gaussian Naïve Bayes 

From the log of the conditional likelihood of  

       ln / , ln 1/ 1 ln 0/ ,
n

i i i i i i i i

i

P Y X W Y P Y X Y Y X W      

       ln 1 ln 1
n

T T

i i i i

i

Y W X Y W X      

 
 

  ln ln 1
1

T
n

i T

iT
i i

W X
W X

W X





  




 

     
 
 

  
ln

; ; ln / , ln 1
1

( ) ( ( ))
( , )

( )

Tn
i T

i i iT
i i

n
i i i

i

i i

w X
w x w x P Y X w w X

w X

x w b w
c y

a






 




    


 
  

 



  

By chain rule,  

. . .i i i i i

i i i i iW w

  

  

    


    
 (16)

 
From the canonical form of  thebernoulli distribution, that is  

 1
Pr( , ) 1i ix x

ix    
 

 
                   Re-writing in an exponential form  

   1
( , ) exp log 1i ix x

i if x    
   

 
 ( , ) exp log (1 )log(1 )i i i i i if x x x       
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 

 

'

exp log log(1 ) log(1 )

exp log log(1 ) log(1 )

exp log log(1 )
1

,

( ) log , ( ) log(1 ), ( ) 1
1

1, 1, ( , ) 1,
1

, ( )
1

i i i i i

i i i i i

i
i

i

i
i i i i

i

i i

i i

x x

x x
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g b e a

e
w c y

e

e
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







  

  







  



  

 

    

    

   
    

   

 
    

 

   


 

''var( ) ( ). ( ) (1 )

i

i i i i i

e

x a b




   




  

 

 

 

                      So, equation (15) equals, 

 

. . .i i i i i

j i i i iW w

  

  

    


    
 

 
'

'' '

( ) 1 1
. . .
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i i
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
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 

'

'

2 '' 2

( )
1

.1. .
1 ( )

1 1
( ) ;

var( ) ( ) ( )

0, 1

n

i i

i
ij

i

i
i i i

i i i i i i

i
i i i ij

i ij j

x

x
g

let d g u
x d a b d

x d x j p
W W








  








   



 
    

 



 

 

Where i iand d depend on w . 

 

The solution has no closed-form, which collaborate with equation (1) 

that  gives the cross entropy error function and it has no close form 

solution to maximize the likelihood with respect to W. Since, there 

is no close-form solution due to the non-linearity of the logistic 

sigmoid function in equation (15). The parameter in the maximum 

likelihood can be estimated by iterative technique of Newton-

Raphson iterative optimization method which uses a local quadratic 

approximation of the log-likelihood function. 

        We want to solve ( ) 0f w  . We need to find  new
w  satisfying 

( )( ) 0newf w   which require '( ) 0newf w   

         

 A Taylor Series expansion of '( )newf w  gives 
'0 ( ) ( ) ( )( )new old old new oldf w f w f w w w      

 

Which implies, 
( ) ( )

'

( )

( )

new old f w
w w

f w
   

   For oldw close to neww . This implies the iteration of 
( )

( ) ( )

' ( )

( )

( )

old
new old

old

f w
w w

f w
   
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or in a case of multiple vector where  “f” is the score vector, 
w




 

1
2

new
w neww

new old

T

w w

w w
w w w







    
      

      

 

         
1

2new old old old
W W W f W



    
 

(17) 

   '
n

T

n n

i

E W W X Y X    

' 'TX XW X Y   

also, 

 2

1

n
T

n n

i

E W X X


   

TX X  

              

Substituting   2E W  into (17) 
        

2new old oldT T TW W X X X XW X Y    

 
1

T TX X X Y


   (18) 

Where  new
W converges 

 

EXPERIMENTAL WORK 

The data considered in this 

research work was the 

panaceas used for diarrhea 

treatment on babies less than a 

year old in Nigeria from a 

survey conducted by the 

Nigeria Demographic Health 

Survey (NDHS, 2013) to 

determine whether the four 

set of panacea drugs are 

effective in curing diarrhea 

among babies or not. The 

NDHS sample was designed to 

represent Government 

Hospitals in each of the 36 

states. The covariates include 

the oral rehydration, home 

solution, antibiotics pills/syrups 

and Zinc used on 500 babies 

suffering from diarrhea.    
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POSTERIOR SUMMARIES 

   Table1: Empirical Mean and Standard Deviation 

for Classical Logit and Posterior Moments 
   Classical Logit Posterior Moments (Naïve) 

Variables 

(panaceas) 

Mean SD S.E Mean SD    S.E 

(Intercept) -2.9131 0.2979 0.0103 -2.9217 0.1534 0.0025 

Oral rehydration 0.2230 0.0962 0.0037 0.2238 0.0852 0.0010 

Home solution 0.0832 0.0683 0.0020 0.0800 0.0509 0.0005 

Antibiotics 

pills/syrups 

1.1819 0.3104 0.0118 1.1797 0.3000 0.0030 

   Zinc -1.4475 0.6528 0.0452 -1.8539 0.5630 0.0065 

 

From table1 above, diarrhea as 

the dependent variable and oral 

rehydration, home solution, 

antibiotics pills/syrups and 

Zinc as the independent 

variables were evaluated for 

both the Bayesian and Classical 

logistic regression. The positive 

signs of means of Oral 

rehydration, Home solution, and 

Antibiotics pills/syrups in both 

Bayesian logistic regression and 

classical logistic regression 

unfolds that there is a positive 

contribution or relationshipin 

curing diarrhea among the 

babies while Zinc effect on 

diarrhea on the babies are 

inconclusive. The estimated 

means of the two approaches 

are very close but that of 

Bayesian logistic regression 

using GNB were smaller. Also, 

noted were the standard 

errors of the Bayesian logistic 

regression using GNB that were 

smaller than that of logistic 

regression which indicated a 

greater stability of the 

parameters estimated via 

Bayesian logistic regression 

using GNB.
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Table 2:   Quantiles of Posterior Distribution 
Variables 2.5% 25% 50% 75% 97.5% 

(Intercept) -

3.4200 

-

3.0979 

-2.9234 -

2.7378 

-2.4311 

Oral rehydration 0.0356 0.1594 0.2239 0.2852 0.4092 

Home solution 0.0246 0.0458 0.0816 0.1161 0.1760 

Antibiotics pills/syrups 0.5831 0.9831 1.1785 1.3824 1.7615 

   Zinc -

3.5213 

-

2.1800 

-1.7313 -1.3970 -0.8944 

 

From table 2, the quantiles 

indicated that parameters are 

mostly around 0.2230, 0.0832, 

1.1819 and -1.4475    for Oral 

rehydration, Home solution, 

Antibiotics spills/syrups and 

Zinc   with a 2.5% probability 

taking a value below 0.0356, 

0.0246, 0.5831 and -3.5213 or 

a value above 0.4092, 0.1760, 

1.7615 and -0.8944 

respectively.  

 

While: 

   

 1 2 3 4

1/

1

1 exp -2.9217 0.2238X +0.0800X +1.1797X -1.8539X

T

iP Y X W X 


 

 

Then, 
   

 1 2 3 4

0/ 1

1
1

1 exp -2.9217 0.2238X +0.0800X +1.1797X -1.8539X

T

iP Y X W X  

 
 

 

 

Table 3:   Predictive Probabilities 
Variables Oral 

rehydration 

Home solution Antibiotics 

pills/syrups 

Zinc 

Logistic Sigmoid ( )ia  0.7055 0.7134 0.5911 0.5205 

 

From table 3 above, it was 

deduced that Home solution 

has been the most contributing 

panaceas among the four 

panaceas followed by Oral 

rehydration, Antibiotics 

pills/syrups and Zinc.  
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CONCLUSION 

It was found that Gaussian 

Naïve Bayes is appropriate for 

prior distribution for Bayesian 

logistic regression when we are 

not sure of the two forms of 

priors (informative and non-

informative). The parameters 

for Bayesian approach using 

GNB were smaller than that of 

classical logistic regression. 

Also, the standard errors for 

the parameters for Bayesian 

logistic regression using GNB 

were lower than the standard 

errors of the classical 

approach using MLE. This 

makes the Bayesian logistic 

regression using GNB to be 

more preferred. 
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