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ABSTRACT 

This paper highlights the impact of noise on diagnostic image quality 

and the methods used to de-noise the images for improved quality 

and better clinical diagnosis. The various types of noise sequences 

interfering with the diagnostic image especially, the Gaussian white 

noise was discussed. Since the first two moments of a normally 

distributed process is sufficient to characterize it completely, the 

mean and variance of higher powers of the linear Gaussian white 

noise process ......,3,2,1,  bXY b

tt  were determined. The results show 

that for fixed , increase in power of the process leads to increase 

in variance. As noise production is inherent in the modality for the 

image acquisition, and against the backdrop that repeat studies have 

some unpalatable economic, health and social consequences, we 

recommend that health managers should rather, go for equipments 

with high signal to noise ratio when procuring medical imaging 

equipments and should at all times hire the services of quality 

assurance personnel.   

 

Keywords: Gaussian white noise, time series, image quality, medical 

diagnosis, computed tomography. 

 

INTRODUCTION 

Noise processes are known to 

constitute a nuisance in medical 

image processing. They degrade 

the final image if nothing is 

done to eliminate or reduce the 
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noise process. Simply put, 

image noise is the random 

variation in the image 

brightness arising from photon 

fluctuations in the image 

recording medium. Image 

quality is an important topic of 

discuss in the field of 

radiography and medical 

imaging. The main purpose of 

medical imaging is to produce 

images with clear and detail 

outlines of the anatomical 

structures of the body part of 

interest to enhance medical 

diagnosis. The presence of 

noise in the image suppresses 

structural details thus making 

it difficult to achieve accurate 

medical diagnosis. But, the 

methods of acquisition of the 

images make them vulnerable to 

noise interferences. Images 

acquired by digital processing 

as is the case in ultrasound 

imaging, digital radiography, 

Computed Tomography (CT), 

Magnetic Resonance Imaging 

(MRI), etc. are more vulnerable 

to noise interference. In fact, 

noise formation is part and 

parcel of medical images 

production because of the 

various modes of acquisition of 

these images. It is very 

important that the noise 

recorded in the image is very 

low or eliminated completely in 

order to enhance image quality 

and medical diagnosis.  Modes 

of acquisition of medical images 

in radiography and imaging 

include conventional x-ray 

imaging (radiography) in which 

an x-ray film, sandwiched in 

between two intensifying 

screens, is exposed to 

emergent x-ray photons from 

the patient’s body part, and 

fluoroscopy in which signals 

from the patient’s body part 

are made to pass through a 

system of cameras, 

photomultipliers, closed circuit 

television (CCTV) before being 

displayed on the visual display 

unit (VDU) and followed by 

radiography (x-ray imaging). 

Other methods of image 

acquisition are Computed 

Tomography (CT), Magnetic 

Resonance Imaging (MRI), 

digital radiography, digital 

mammography, diagnostic 

ultrasound imaging, nuclear 

medical imaging with Single 

Photon Emission Computed 

Tomography (SPECT), and 
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Positron Emission Tomography 

(PET) (Prudhvi and 

Venkateswarlu, 2012). These 

different methods of image 

acquisition are associated with 

production of different types 

of noise components of 

different intensities and 

frequencies. The types of noise 

commonly seen in medical 

imaging include the quantum 

noise that is common to 

conventional radiography, the 

speckle and Poisson noises 

which are generally referred to 

as multiplicative noise because 

their variance is not constant 

but depends on the parameters 

of the noise model to be 

estimated (Sanches et al., 

2008). These types of noises 

occur, in varying degrees, in 

imaging modalities such as 

ultrasound scanning 

(Burckhardt, 1978), 

PET/SPECT (Ollinger and 

Fessler, 1997), functional MRI 

(Hagberg et al., 2001) and 

fluoroscopy. The Gaussian 

white noise is commonly 

associated with computed 

tomography (Gravel et al., 

2004) and low intensity MRI 

(Bao and Zhang, 2003). Image 

processing in conventional 

radiography and fluoroscopy 

produces very minimal noise 

interference that compromises 

in the image quality is more as 

a result of chemical processing 

fault, positioning fault, 

processing equipment fault and 

film handling faults (Arimie, 

2012). On the other hand, 

digital image processing as is 

the case with Computed 

Tomography (CT), Magnetic 

Resonance Imaging (MRI), 

digital radiography, digital 

mammography, diagnostic 

ultrasound imaging, nuclear 

medical imaging with Single 

Photon Emission Computed 

Tomography (SPECT), and 

Positron Emission Tomography 

(PET) produces high degrees of 

noises that interfere with the 

image quality. Our objective in 

this paper is to examine the 

Gaussian white noise process 

which is the main noise process 

associated with the modes of 

image acquisition and 

processing commonly found in 

health care facilities in 

Nigeria. The distribution of the 

noise process and its moments 

and higher moments would be 

examined. Also to be examined 

are methods used to eliminate 
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or reduce noises in the 

diagnostic images for improved 

image quality. 

GAUSSIAN WHITE NOISE 

PROCESSES   

Gaussian noise is a statistical 

noise sequence with probability 

density function equivalent to 

that of the normal (Gaussian) 

distribution. In other words, 

the values that the noise can 

take on are Gaussian-

distributed (Khera and 

Malhotra, 2014). A special case 

of the Gaussian noise is the 

linear Gaussian white noise 

process which, in addition to 

being distributed normally, is 

identically distributed and 

statistically independent (and 

hence uncorrelated). It is 

assumed to have zero mean and 

finite variance 2 . Linear 

Gaussian white noise processes 

are important class of 

stationary processes that form 

the building blocks of most 

time series processes. In 

statistics, the linear Gaussian 

white noise process, denoted 

by et, t  Z, is defined 

(Brockwell and Davies, 2002; 

Greene, 2005; Brooks, 2013) as 

having  
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Where R (k) is the auto-covariance function and k is the 

autocorrelation function at lag k. The partial autocorrelation 

function is  
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As a normally distributed process, the linear Gaussian white noise 

process is completely characterized by its first two moments – the 

mean and variance (Kunst, 2004; Iwueze, 2006). 

 

 

HIGHER MOMENTS OF THE LINEAR GAUSSIAN WHITE 

NOISE PROCESS 

For the linear Gaussian white noise process, 

),0(~,, 2NiideZteX ttt  we define the nth central moment of the 

process as 
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Then, the even moments are as shown in Table 2.1 and all the odd 

moments are zero. The expansion of the product  



a

c

c
1

12  is shown in 

Table 2.2. 

 

Table 2.1: The Even Moments of the Linear Gaussian White 

Noise Process 
b a = b/2 E(eb) 

2 1 
2  

4 2 34  

6 3 156  

8 4 1058  

10 5 94510  
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Table 2.2: Expansion of the Product  



a

c

c
1

12    

b a  
 




a

c

c
1

12  

2 1 (1) = 1 
4 2 (1 * 3) = 3 
6 3 (1 * 3 * 5) = 15 
8 4 (1 * 3 * 5 *7) = 105  
10 5 (1 * 3 * 5 * 7 * 9) = 945  
12 6 (1 * 3 * 5 * 7 * 9 * 11) = 10,395  
14 7 (1 * 3 * 5 * 7 * 9 * 11 * 13) = 135,135 
16 8 (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15) = 2,027,025 
18 9 (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17) = 34,459,425 
20 10 (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) = 654,729,075 

Let ......,3,2,1,  bXY b

tt  be the higher moment of the linear Gaussian 

white noise process where, tt eX  . 
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Using Table 2.1 and equations (2.7) and (2.8) respectively, the mean 

and variance of the higher moments of the linear Gaussian white 

noise process were calculated. The results are shown in Table 2.3.  

 

Table 2.3: Mean and Variance of ......,3,2,1,  bXY b

tt  

b b

tt XY   )()( b

tt XEYE   )( tYVar  

1 Xt 0 
2  

2 Xt
2 

2  24  

3 Xt
3 0 156  

4 Xt
4 34  968  

5 Xt
5 0 94510  

6 Xt
6 156  1017012  

7 Xt
7 0  13513514  

8 Xt
8 1058  201600016  

9 Xt
9 0 3445942518  

10 Xt
10 94510  65383605020  
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From Table 2.3 it is clear that for fixed , increase in power, b leads 

to increase in variance. Simulation of )( tYVar for b = 2, 3 

and 4 shows that If 
b

tt XY  then, 

(i) Yt is a linear white noise  

(ii) Var(Yt) depends on b. that 

is, )()( 21 b

T

b

t XVarXVar   provided b1 

< b2  for fixed  (see figure 

2.1). 

 

Table 2.4: Simulation of )( tYVar for b = 2, 3 and 4 given that b

tt XY     
                      b = 2            b = 3         b = 4 

42)( tYVar  615)( tYVar  896)( tYVar  

0.1 0.0002 

 

0.0000 

 

0.0000 

 0.2 0.0032 

 

0.0010 

 

0.0002 

 0.3 0.0162 

 

0.0109 

 

0.0063 

 0.4 0.0512 

 

0.0614 

 

0.0629 

 0.5 0.1250 

 

0.2344 

 

0.3750 

 0.6 0.2592 

 

0.6998 

 

1.6124 

 0.7 0.4802 

 

1.7647 

 

5.5342 

 0.8 0.8192 

 

3.9322 

 

16.1061 

 0.9 1.3122 7.9716 41.3249 

 1.0 2.0000 15.0000 96.0000 

 

 
Figure 2.1: The graph of Var (Yt) against the values of  for b =2, 3 

and 4 
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METHODS OF DENOISING 

THE IMAGE 

Image de-noising is a subject 

matter that has taken the 

attention of many researchers 

in image processing world for a 

long time now. Much progress 

has been made in this area but 

still, there is so much to be 

done to guarantee noise free 

medical images, as accurate 

diagnosis of the patient’s ill 

condition of health depends on 

it. Some techniques for de-

noising medical images have 

been proposed. They include 

the use of diffusion filters and 

discrete wavelet transforms. 

Diffusion filters are efficient 

if the noise level is low but if 

the noise level is high, the use 

of a combination of filters is 

advised in order to achieve a 

better image enhancement. 

Another method used to de-

noise the image is called 

threshold technique. According 

to Khera and Malhotra (2014), 

threshold technique can be 

used to create binary image 

from gray scale image. In this 

technique, an image is 

segmented by setting all pixels 

which have intensity values 

above a threshold value 

determined, abinitio, to be a 

forehand value and all the 

remaining pixels to a 

background value. Further 

discussions on this can be 

found in Sanches et al., (2008) 

and Khera and Malhotra (2014). 

Although it is not the 

responsibility of practitioners 

in radiology and imaging to 

measure noise levels in the 

image or even to de-noise the 

image, it is important that they 

are aware that noise production 

in imaging is inherent in the 

imaging systems so that they 

can properly advise managers in 

the field on the most 

appropriate equipment to buy 

and also, to advise on the need 

for quality assurance personnel 

whose responsibility it is to 

assess, on regular basis, the 

suitability of an imaging 

equipment for continued usage. 

Before procurement of such 

expensive equipment it is 

important to check that the 

various parameters and 

specifications given by the 

manufacturers would meet the 
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need of the healthcare facility. 

For example, equipment which 

can acquire images and process 

them with high signal to noise 

ratio (SNR) would definitely be 

more efficient than one with 

low SNR. In other words a 

diagnostic image with low noise 

sequence is better than one 

with high noise sequence. The 

cost implication of a noisy 

image cannot be 

overemphasized. Aside the 

economic waste arising from 

repeated studies, the radiation 

hazard associated with 

repeated studies in CT and 

digital radiography is enormous. 

For these reasons, 

measurement of image quality 

is very crucial.  
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