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ABSTRACT 

In this study, we proposed a Mathematical Model of tuberculosis 
dynamics. The model is a system of four first order ordinary 
differential equations. The population is partitioned into four 
compartments of passively immune infant class )(tM ,  Susceptible )(tS , 
Infected )(tI and Recovered )(tR . The analytical solutions using 
Homotopy Perturbation method (HPM) were obtained. Graphical 
profiles for each of the four compartments were obtained using MAPLE 
computer software package.  The results shows that the disease has a 
tendency of dying out with time when there is high recovery rate. 
Key words: Tuberculosis, Analytical solution, Homotopy perturbation.
 
INTRODUCTION 
Tuberculosis is one of the oldest disease known, yet one of the most 
difficult to control; Nigeria has the second highest burden of TB in 
Africa and the 4th highest in the world. The World Health Organization 
(WHO) has said TB has emerged as the leading cause of death from 
single infectious agent and has continued to be a major public health 
problem all over the world. Of more than 14 million cases reported 
worldwide, Nigeria ranked fourth in terms of incidence[1]. The high 
incidence of Tuberculosis in developing countries is as a result of 
poverty and underdevelopment, which lead to overcrowding, 
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malnutrition, lack of access to good Health care services which are 
contributory factors to the spread of the disease. A good reason to be 
apprehensive is that Nigeria has just a few MDR-TB wards. These are 
in Ibadan (commissioned in July 2010), managed by the Damcen 
foundation; in Lagos commissioned by Global fund in 2012; and 
another at the Zonal Reference Lab in Calabar. [2]. 
 
Despite the availability of highly efficacious treatment for decades, TB 
remains a major global health problem. In 1993, the World Health 
Organization (WHO) declared TB a global public health emergency, at 
a time when an estimated 7–8 million cases and 1.3–1.6 million deaths 
occurred each year [3].  
 
LITERATURE REVIEW 
Research has shown that Genetic Susceptibility affect Endemic 
prevalence levels and alters the effect of Treatment of Tuberculosis 
patient. Genetic Susceptible are part of the Susceptible subpopulation 
that can be infected with Mycobacterium Tuberculosis, as not all 
people are equally Susceptible to TB [4]. 
 
In a related Research work by Koriko and Yusuf [5] the Dynamics of 
Tuberculosis Disease Population was considered using the Susceptible- 
Infected- Recovered but Susceptible (SIRS) Model. Tuberculosis is an 
Air-borne Contagious Disease affecting about one third of the World 
Population, out of which two third live in developing countries.  In a 
study on the effect of DOTS in Nigeria Daniel and Andrei [6] presented 
a Mathematical Model for Tuberculosis and its Dynamics under the 
implementation of DOTS in Nigeria. The condition for the Eradication 
of Tuberculosis in Nigeria established by the Model was based on the 
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fraction of detected infectious individual under the DOTS treatment. 
Both Numerical and Qualitative Analysis of the model were performed. 
The effect of the fraction of detected cases of active TB on the various 
Epidemiological groups was investigated. In an attempt to study the 
effect of Vaccination, treatment and population area size on the 
transmission dynamics of TB in a proportionate mixing population. 
Umar [7] proposed a Mathematical Model that incorporates the 
Density dependent Dynamics of Tuberculosis, the effect of Treatment 
and Vaccination. The Study reveals that if the Population area size is 
Large the Density of the Susceptible will be small and this will reduce 
the size of the Basic Reproduction Number. 
 
Yusuf [8] proposed a Deterministic Compartmental Model but ignored 
the different Rates of Progression from Latent to infectious Class; this 
however precludes the speedy Progression of TB caused by HIV 
infections. By weakening the immune system of a TB patient, HIV acts 
as catalyst in the progression of TB from Latent Class to Infectious 
Class. A patient with AIDS who become infected with Mycobacterium 
Tuberculosis has a 50% chance of developing Active Tuberculosis 
within 2 months and a 5 to 10% chance of developing Active Disease 
thereafter. Infants and young children are also more likely to develop 
Active TB than older people since their Immune System are not yet well 
developed [9]. 
 
MATERIALS AND METHODS 
Model Development 
The population was divided into Four Classes: )(tM  represents Infant 
that are Immured at Birth; )(tS  represents the number of Individuals 
that are Prone to the disease at time t , or those Susceptible to the 
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Disease; )(tI denote the number of Individuals who have been Infected 
with the Disease and are Capable of spreading the Disease to those in 
the Susceptible Class; )(tR  is the Compartment consisting those 
Individuals who have been infected and then Recovered from the 
Disease after treatment. This can be shown as a Flow Diagram in which 
the boxes represents the different Compartments and the arrows the 
transition between the Compartments. 
   

   

        

t  

                                                         
t                                    

   M S I R 

 
Figure 1 : Schematic presentation of the Model 
 
Assumptions 
We assume that all New Births are immunised. Members of the 
Susceptible Class moved into the Infected class via interaction of the 
Susceptible with the Infected at the Rate  . 
 
There is constant recruitment  into Passively Immune Infant Class via 
vaccination at birth. The Population of Passively Immune  Class 
decreases due to Natural Death at the Rate  and movement of the 
individual into the Susceptible Class as a Result of Waning off of 
Vaccine at the Rate   the Population of the Susceptible increases due 
to coming in of individual from Passively immune Class and Recovered 
Class at the Rate  and  respectively. The Population of the 
Susceptible Class decreases due to the movement of individual into the 
infected Class at the Rate   and Natural Death at the Rate  . The 
Population of the infected Class decreases due to Treatment against 
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Tuberculosis at the Rate   and Natural Death Rate and Death as a 
Result of TB infection at the Rate 

t  the Population of the Recovered 
Class increases due to recovery of infected individuals at the Rate   
from infected Class and decreases due to movement of individual into 
Susceptible Class at the Rate   and Natural Death Rate   
 
Model Equations. 
The model was described using the following system of ordinary 
differential equations. 

 M
dt

dM
  (1)  

  SSIM
dt

dS
  (2) 

 ISI
dt

dI
t   (3) 

 RI
dt

dR
  (4)

 
 
Analytical Solution of the Model 
Homotopy Perturbation Method (HPM) 
Fundamentals of Homotopy Perturbation Method (HPM) were first 
proposed by Ji-Huan He (2000). 
To illustrate the basic ideas of this Method, the following nonlinear 
differential equation was considered: 

 rrfuA ,0)()(   (5) 
Subject to the boundary condition: 













r

n

u
uB ,0,    (6) 

 
Where A is a general differential operator, B a boundary operator, 

)(rf is a known analytical function and  is the boundary of the 
domain . The operator A can be divided into two parts L and N, where 
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L is the linear part, and N is the nonlinear component. Equation (5) 
may therefore be rewritten as: 

 rrfuNuL ,0)()()(  (7) 
 
The Homotopy Perturbation structure is shown as follows 

    0)()()()()1(),( 0  rfvApuLvLppvH (8) 
Where:   

  Rprv  1,0:),(   (9) 
 
In equation (7)  1,0p is an embedding parameter and 

0u is the first 
approximation that satisfies the boundary condition. It can be assumed 
that the solution of equation (7) can be written as power series in p as 
follows: 

....2

2

10  vppvvv   (10) 
and the best approximation for the solution is: 

....lim 2

2

101   vppvvvu p  (11) 
The series (11) is convergent for most cases. However, the convergence 
rate depends on the nonlinear operator A(v).  
 
Solution of the Model Equation 
Equations (1) to (4) can be written as  

  0  M
dt

dM (12) 

  0 SISM
dt

dS
 (13) 

  0 ISI
dt

dI
t  (14) 

  0 RI
dt

dR
 (15) 

With the following initials conditions
0)0( MM  , S (0) =

0S , I(0)=I
0
 and 

R(0)=
0R  

Applying HPM to (12) we have 
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  0)1( 








  M

dt

dM
p

dt

dM
p   (16) 

Let 
....2

2

10  wppwwM            (17) 
....2

2

10  xppxxS                (18) 
....2

2

10  yppyyI                (19) 
....2

2

10  zppzzR                (20) 
 
Substituting (17) into (16) 
      ' ' 2 ' ' ' 2 ' 2

0 1 2 0 1 2 0 1 21 ( ....) .... ... 0p w pw p w p w pw p w w pw p w                 
 

(21) 
 

' ' 2 ' 2 2

0 1 2 0 1 2 0 1 2( ...) ... ... 0w pw p w p w p w p w w pw p w p                    
   

(22) 
 
Collecting the coefficient of the powers of p  we have 

0 '

0: 0p w  (23) 
' '

1 0 0: 0p w w w      (24) 
2 ' '

2 1 1: 0p w w w               (25) 
3

2 2: 0p w w                      (26) 
 
Applying (HPM) to (13) 

  0
dS

M S I S
dt

        (27) 
 

 (1 ) 0
dS dS

p p M S I S
dt dt

   
 

       
    (28) 

 
Substituting (17), (18) and (19) into (28) 
 



 

81 

 

Journal of Physical Science and Innovation Volume 10, No. 2, 2018 

 

   

   

  

' ' 2 ' 2

0 1 2 0 1 2

' ' 2 ' 2 2

0 1 2 0 1 2 0 1 2

2 2

0 1 2 0 1 2

.... ...

1 ( . ...) ..... 0

... ...

x px p x w pw p w

p x px p x p x px p x x px p x

x px p x y py p y



 



       
 
             
 
       
 

     (29) 

 
Collecting the coefficient of the powers of p  we have 

0 '

0: 0p x    (30) 
1 '

1 0 0 0 0 0: 0p x w x x x y           (31) 
2 '

2 1 1 1 1 1: 0p x w x x x y         (32) 
3

2 2 2 2 2: 0p w x x x y               (33) 
 
Applying HPM to (14) gives 
 

 (1 ) 0t

dI dI
p p SI I

dt dt
   

 
       

  (34) 
 
Substituting (18) and (19) into (34) gives 
 

 

  

  

' ' 2 '

0 1 2

' ' 2 '

0 1 2

2 2

0 1 2 0 1 2

2

0 1 2

1 ( . ...)

....

... ..... 0

.t

p y py p y

y py p y

p x px p x y py p y

y py p y



  

   

   
 
         
 
      
 

(35) 

 
Collecting the coefficient of the power of p 
 

0 '

0: 0p y      (36) 
 1 '

1 0 0 0: 0tp y x y y         (37a) 
 2 '

2 1 1 1: 0tp y x y y         (337b) 
 3

2 2 2: 0tp x y y         (38) 
 
Applying HPM to (15) gives 
 

 (1 ) 0
dR dR

p p I R
dt dt

  
 

      
 

 
(39) 
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Substituting (20) and (19) into (39)  gives 
 

 

 

 

  

' ' 2 '

0 1 2

' ' 2 ' 2

0 1 2 0 1 2

2

0 1 2

....

1 ( . ...) ... 0

.

z pz p z

p z pz p z p y py p y

z pz p z



 

   
 
          
 
     
 

  
(40) 

 
Collecting the coefficient of the power of p 
 

0 '

0: 0p z      (41) 
1 '

1 0 0 0: 0p z y z z        (42) 
2 '

2 1 1 1: 0p z y z z        (43) 
3

2 2 2: 0p y z z        (44) 
 
From (23) 
 

0: '

0

0 wp  
'

0 0w      (45) 
 
Integrating both side 
 

Aw 0     (46) 
Applying the initial condition 
 

000 )0( wMw      (47) 
Hence 
 

0MA      (48) 
00 Mw      (49) 
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From (30)  
 

0: '

0

0 xp     (50) 
. '

0 0x   
 
Integrating both side we have 

Bx 0     (51) 
Applying the initial condition 
 

000 )0( xSx     (52) 
0SB       (53) 

00 Sx               (54) 
 
From (36) 
 

0: '

0

0 yp     (55) 
0'

0 y      (56) 
Integrating both side we obtained 
 

Cy 0
     (57) 

 
Applying the initial condition 

000 )0( yIy      (58) 
00 yI       (59) 

 
From (41) 

0: '

0

0 zp     (60) 
0'

0 z      (61) 
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Integrating both side gives 
0z D      (62) 

 
Applying the initial condition 

000 )0( ZRZ     (63) 
0RD       (64) 
00 ZR       (65) 

 
From (24) 

' '

1 0 0: 0p w w w        (66) 
'

1 0 0 0w w w         (67) 
 dtwww 00

'

1      (68) 
    Etwwtw  001    (69) 

 
Where E is the constant of integration. Applying the initial condition 
 

0)0(1 w     (70) 
0,01  tw     (71) 

  
0E      (72) 

Hence  
 twww 001     (73) 

Substituting (49) into (73) gives 
1 0 0( )w M M t       (74) 

 
From (3.74) 

1 '

1 0 0 0 0 0: 0p x w x x x y         (75) 
  

00000

'

1 wxxyxx    (76) 
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Integrating (76) we obtained  
 
 1 0 0 0 0 0( )x t x y x x w t F          (77) 

 
Where F is constant of integration. Applying the initial condition 

0)0(1 x     (78) 
  

0F      (79) 
1 0 0 0 0 0( )x x y x x w t         (80) 

 
Substituting (49),(54) and (59) into(80) 

 tMSSISx 000001    (81) 
 
From (37) 

  0: 000

'

1

1  yyxyp t   (82) 
  000

'

1 yyxy t     (83) 
Integrating (83) gives, 

    Gtyyxty t  0001 )(   (84) 
 
Where G is constant of integration. Applying the initial condition 

0)0(1 y     (85) 
  

0G      (86) 
Hence 

   tyyxy t 0001     (87) 
 
Substituting (54) and (59) into (87) gives, 

   tIISy t 0001     (89) 
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From (42) 
1 '

1 0 0 0: 0p z y z z         (90) 
  

000

'

1 zzyz      (91) 
Integrating (91) gives 

    Htzzytz  0001    (93) 
 
Where H is constant of integration. Applying the initial condition 

1(0) 0Z       
0H   

hence 
 tzzyz 0001      (94) 

 
Substituting (59) and (65) into  (94) gives, 

 tRRIz 0001     (95) 
 
Substituting (74) into (25) gives 
 

  '

2w   000  tww   (96) 
  '

2w   000  tww   (97) 
 
Integrating (97) gives 

  2w   )(
2

2

00 tI
t

ww    (98) 
 
Applying the initial condition   

0)0( I      
Hence  

  2w  
2

2

00

t
ww     (99) 
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Substituting (49) into (99) we obtained, 
 

  2w
2

0 0( )
2

t
M M     (100) 

Applying (11) we have 
 

)(tM 2

0 1 2
1

lim ...
p

w pw p w


    
 

  

0 0 0
1

2
2

0 0

lim

2

p
M p M M t

t
p M M

  

    


   

   

  (101) 

Hence 
 

  

0 0 0

2

0 0

( )

2

M t M M M t

t
M M

  

    

   

   
  (102) 

From (32) 
 

011111

'

2  yxxxwx    (103) 
11111

'

2 yxxxwx     (104) 
  1111

'

2 yxwxx      (105) 
 
Substituting (81), (74) and (89) into (105) gives 
 

    

    

'

2 0 0 0 0 0 0 0

2

0 0 0 0 0 0 0 0t

x S I S S M t M M t

S I S S M S I I t

         

        

        

       

(106) 

 
Integrating (106) gives 
 

  

 

    

2

2 0 0 0 0 0

2

0 0

3

0 0 0 0 0 0 0 0

2

2

3
t

t
x S I S S M

t
M M

t
S I S S M S I I

     

   

        

     

  

       

(107) 

Applying (11) we have 
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....lim)( 2

2

10
1




xppxxtS
p (109) 

Hence 
 

 

 

 

    

2

0 0 0 0 0

2

0 0 0 0 0 0 0 0

3

0 0 0 0 0 0 0 0

( )
2

( )
2

3
t

t
S I S S M

t
S t S S I S S M t M M

t
S I S S M S I I

     

       

        

 
     

 
 

         
 
 
        
 

(111) 

 
From  (37b) 
 

  0111

'

2  yyxy t    (113) 
 
Substituting (81) and (89) into (113) gives 
 

    

    

'

2 0 0 0 0 0 0 0 0

0 0 0

t

t t

y S I S S M t S I I t

S I I t

        

      

       

     
(114) 

  
    

    

2

2 0 0 0 0 0 0 0 0

0 0 0

t

t t

y S I S S M S I I t

S I I t

        

      

         

     
(115) 

 
Integrating (115) gives 

    

    

3

2 0 0 0 0 0 0 0 0

2

0 0 0

3

2

t

t t

t
y S I S S M S I I

t
S I I

        

      

        

     

(116) 

 
Applying (11) we have 
 

....lim)( 2

2

10
1




yppyytI
p

 (117) 
 
Substituting (59),(89), (116) into (117) gives 
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  

    

    

0 0 0 0

3

0 0 0 0 0 0 0 0

2

0 0 0

( )

3

2

t

t

t t

I t I S I I t

t
S I S S M S I I

t
S I I

   

        

      

    

        

     

(118) 

 
From (43) 

'

2 1 1 1 0z y z wz       (119) 
  

  11

'

2 zwyz      (120) 
 
Substituting (89) and (95)  into (120) gives 

 

 

'

2 0 0 0

0 0 0

)

( )

tz S I I t

w I R R t

    

   

   

   
  (121) 

Integrating (3.174) gives 
 

 

2

2 0 0 0

2

0 0 0

)
2

( )
2

t

t
z S I I

t
I R R

    

    

   

   

  (122) 

Applying (11) we have 
 

2

0 1 2
1

( ) lim ...
p

R t z pz p z


       (123) 
 
 
Substituting (65),  (95) and (122) into (123) gives 
 
   

  

  

0 0 0 0

2

0 0 0

2

0 0 0

2

2

t

R t R I R R t

t
S I I

t
I R R

  

    

    

   

   

   

  (124) 

 
Hence the general solution of the model is given by(102), (111), (118), 
and (124) i.e. 
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 

  

0 0 0

2

0 0

( )

2

M t M M M t

t
M M

  

    

   

      (125) 

 

 

 

 

 
 

2

0 0 0 0 0

2

0 0 0 0 0 0 0 0

3
0 0

0 0 0 0 0

0

( )
2

( )
2

3t

t
S I S S M

t
S t S S I S S M t M M

S I t
S I S S M

I

     

       


    

  

 
     
 
  

         
 
  
            

(126) 

 
    

 

    

3
0 0

0 0 0 0 0 0 0 0 0

0

2

0 0 0

( )
3

2

t

t

t t

S I t
I t I S I I t S I S S M

I

t
S I I


        

  

      

 
               

     

 
(127) 

 
         

2 2

0 0 0 0 0 0 0 0 0 0
2 2

t

t t
R t R I R R t S I I I R R                         

(128) 
 

Graphical Presentation of the Model Using Maple 
This section shows the Graphs generated from the general solution of 
our Model using MAPLE. 
We use Hypothetical Values to generate Graphs for  

 Low contracting Rate and High Recovery Rate respectively 
 High contracting Rate and  High Recovery Rate 
 Low contracting Rate and Low Recovery Rate 
 High contracting Rate and  Low Recovery Rate 

 
Where 015.0,1.0,016.0,6.0,2.0  t  
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Figure 1: Graphical Profile of Each Compartment for Low 
Contracting Rate and High Recovery Rate 
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Figure 2: Graphical profile of each compartment for High 
Contracting Rate and High Recovery Rate 
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Figure 3: Graphical Profile of Each Compartment for Low 
Contracting Rate and Low Recovery Rate 
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Figure 4: Graphical Profile of Each Compartment for High 
Contracting Rate and Low Recovery Rate  
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Discussion of Results 
In this study, we proposed a mathematical model to study Tuberculosis 
Disease Dynamics. The general solutions of the Model equation were 
obtained using Homotopy Perturbation Method (HPM). The Graphical 
Profiles of the compartments are presented using MAPPLE computer 
software package. 
 
Figure 1 shows graphs for Low Contracting Rate and High Recovery 
Rate  16.0,0001.0    we can see from the graph that the 
population of the Susceptible was increasing, while the population of 



 
 
 

Analytical Solution of a Mathematical Model of Tuberculosis  
with Passively Immune Compartment 

92 

 

the infected was decreasing since the Recovery Rate is High we also 
noticed that the Population of the Recovered rise a bit, also the 
Population of the Passively Immune Infant decreases   we can conclude 
here that the disease is under control. 
 
Figure 2 shows graphical profiles for the High Contracting Rate and 
High Recovery Rate.  16.0,001.0   From the graph the Susceptible 
Population decreases more than when the Contacting Rate was Low 
and the Population of the Infected decreases more than when the 
Contracting Rate was Low also the Population of the Passively Immune 
Infant decreases more than when the Contracting Rate was Low. The 
Population of the Recovered decreases more than when the Contacting 
Rate was Low we can conclude here thatthe more People are Infected 
the lesser the Population of the Susceptible and more effort is needed to 
Eradicate the Disease from the Population. 
 
Figure 3 shows the graphs for Low Contracting Rate and Low Recovery 
Rate  1.0,0001.0   we noticed from the Graph that the Susceptible 
Population increased more than when the Contracting Rate was High. 
 
Figure 4is for High Contracting Rate and Low Recovery 
Rate  1.0,001.0   . The Graph show us that the Population of the 
Susceptible decreased more than when the Recovery Rate was High; 
this shows that more people are Infected. 
 
CONCLUSION 
The Graphical Profile gave us a vivid understanding of the Disease 
Dynamics. Fig 2 and 4 show that increase in Contact Rate drops the 
Population of the Susceptible and the Infected grows exponentially.  
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Prevention is therefore necessary. Figure 1 and 3 shows us that if the 
Contracting Rate is Low and there is a High Recovery Rate the Infected 
Population will drop drastically. Hence the Diseases die out and the 
Population of the Susceptible will Grows exponentially. We can 
conclude here that the Disease have the tendency of Dying out. 
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