APPLICATION OF LEAST ABSOLUTE SUM (LAS) DEFORMATION DETECTION METHOD USING COORDINATE DIFFERENCES FROM DIFFERENT OBSERVATIONAL CAMPAIGNS

Omogunloye O.G., Shittu O.G., Ipadeola A.O. and Ojegbile B.M
Department of Surveying and Geoinformatics Engineering University of Lagos, Akoka-Lagos, Nigeria E-mail:- gabolushohan@yahoo.com,

Abstract

Deformation study is one of the main research fields in geodesy. Deformation study comprises measurement, processing and analysis phases, Measurement techniques can be divided into geotechnical, structural and geodetic methods. Geotechnical and structural methods uses equipment such as tiltmeters, Pseodolites, Laser scanners e.t.c to measure changes in length, inclination, relative height, strains e.t.c. The geodetic methods are of two basic types, the reference and relative methods. This study focuses on the deformation analysis using the geodetic method known as the Least Absolute Sum Method. The method consists mainly of the independent adjustment of each of two epoch data, compatibility test on their a posteriori variances, followed by determination of Trend of movements for all the common points in the monitoring network. A triangulation network was designed (carefully selected) consisting of 45 YTT series second order control points within the study area (Lagos State) resulting in a total of 63 triangles, 189 observations and 90 unknown parameters with 99 degrees of freedom. The network adjustment was done using the method of least squares observation equations. The estimated variance factors for the 2D (horizontal) network were $7.82989325645394 \mathrm{e}-08$ and $7.7207636996395 \mathrm{e}-08$ while 0.03944 and 0.052339 represent

the estimated variance factors for the 1D (height) for the first and second epochs networks respectively. The compatibility of the two epoch data was tested with the variance ratio and compatibility test criteria. Actual displacement vectors were computed and transformed into the same computational base using S-transformation by Least Absolute Sum (LAS), stable and unstable points within the monitoring network were determined using Single Point displacement test, the displacement vector magnitude was computed for the two methods, represented graphically to indicate possible trend of movements that might have occurred. This study finds applications in studying the deformation of large engineering structures such as high rise buildings, bridges, dams, oil exploration zones, mining sites and land slide monitoring.

Keywords: Deformation, Analysis, Least Absolute Sum (LAS).

INTRODUCTION

One important application of survey control networks is the detection of expected deformations at a specified area. This is done by measurements made at successive epochs and the most probable values of the coordinates are obtained using the well-known method of least squares (James, 1985). Any object, when acted upon by external forces, deforms, or exhibits changes in its size or shape. These observable changes are manifestations of internal stresses or pressures produced by the physical interaction of the external forces and the material itself. Materials either fail or tear when stresses exceed certain critical values. (Chrzanowski et al., 1986). It is this risk of failure which practically necessitates deformation monitoring surveys, which allow the implementation of mitigating constructive procedures or evacuations to take place early enough, to prevent loss of life and material.

Generally, the deformation measurement techniques can be divided into geotechnical, structural and geodetic methods. Geotechnical and structural methods are direct measurement methods, which use special equipment to measure changes in length, inclination, relative height, strain, etc. (Teskey and Porter,1988; Chrzanowski, 1986). On the other hand, in the geodetic method there are two basic types of geodetic monitoring networks; namely the reference and relative networks (Chrzanowski et al., 1986). In a reference network, some of the points or stations are assumed to be located outside of the deformable body or object, thus serving as reference points for the determination of the absolute displacements of the object points. However, in a relative network, all surveyed points are assumed to be located on the deformable body.

This study will focus only on the geodetic method using a relative network. In a geodetic monitoring network, the object or area under investigation is usually represented by a number of points which are permanently monumented or marked. All the points are then observed in two or more epochs of time. The geodetic monitoring network can be either a conventional (terrestrial) network, a photogrammetry (i.e., aerial or close-range) network, Global Positioning System (GPS) network or a combination of these network types.

Deformation analysis using the geodetic method mainly consists of a two-step analysis via independent adjustment of the network of each epoch which involves testing coordinate differences for significance, by comparison to the accuracy of their determination, followed by deformation detection between the two epochs. During deformation
analysis it is important to determine the trend of movements (displacements) for all the common points in a monitoring network. The trend of movements, then form a basis for preliminary identification of the actual deformation models. Although deformation analysis is applicable to one-dimensional (1-D), two dimensional (2D) and three-dimensional (3-D) monitoring networks, for this study a 2D (horizontal) and 1D (vertical) networks of secondary controls located around Lagos State were investigated, a robust method, Least Absolute Sum (LAS) was used for deformation detection and analysis.

STUDY AREA

The study area is Lagos state and it is the commercial nerve centre and the most populous city in Nigeria. Lagos State is Nigeria's largest commercial, financial and industrial hub. It has industrial zones around the state with over 2000 small, medium and large scale industries. It is regarded as the smallest state in the country; however, it has the highest population density in the nation. Lagos is geographically located on latitudes and longitudes $6^{\circ} 35^{\prime} \mathrm{N} 3^{\circ} 45^{\prime} \mathrm{E}$ and $6.583^{\circ} \mathrm{N} 3.750^{\circ} \mathrm{E}$ Coordinates. Lagos State has a land mass of about 3,577 square kilometres with about 787 constituting lagoons, swamps, marches and creeks. Lagos harbours most of the high rise buildings, bridges and engineering structures prone to deformation or subsidence. Lagos has several networks of control points spread across different parts of the state to which surveys are tied. For this study, Secondary controls located in Lagos state were used.

DATA ACQUISITION

The study has been executed with an existing geodetic data acquired using the conventional surveying technique. An existing data of a set of control points was used to design a reference network. The data used were second order two dimensional control point coordinates obtained from the office of the SurveyorGeneral of Lagos State while the Orthometric heights for these selected stations in the network are derived from EGM 2008. A total of 45 common stations coordinates were used for the two epochs. Note that second epoch data in this case was simulated from the adjustment of the first epoch data for the purpose of this study. Table 3.0, below shows the coordinates of the first and second epoch data.

Volume 8,

Table 3.0: The Coordinates of the First and Second Epoch Data

		FIRST EPOCH			SECOND EPOCH		
\mathbf{S} / \mathbf{N}	$\begin{aligned} & \text { CONTROL } \\ & \text { POINT } \\ & \text { NAME } \\ & \hline \end{aligned}$	EASTINGS(m)	NORTHINGS(m)	HEIGHT(m)	EASTINGS(m)	NORTHINGS(m)	HEIGHT(m)
1	YTT1	512770.871400334;	718266.132200109;	22.69139892	512770.871403101;	718266.132201002;	22.6714836
2	YTT2	514506.700499577;	718531.839799538;	22.69178864	514506.700502712;	718531.839892683;	22.6177766
3	YTT3	512893.348699673;	714574.324598699;	22.32421379	512893.348696706;	714574.324682748;	22.0283972
4	YTT4	515558.463298852;	713569.142998863;	22.31915793	515558.463313656;	713569.143971483;	22.1792805
5	YTT5	516586.611797575;	714276.855800185;	22.44819168	516586.611803276;	714276.855808693;	22.4573541
6	YTT6	518643.696295812;	713094.787300631;	22.27584535	518643.696301644;	713094.787305278;	22.1277046
7	YTT7	514352.907099268;	714685.214899466;	22.40743677	514352.90709294;	714685.215000243;	22.3007829
8	YTT8	517061.729398256;	715437.606801309;	22.54378808	517061.729400602;	715437.606814866;	22.6728747
9	YTT9	518422.044396225;	714609.031901365;	22.43557176	518422.044396833;	714609.031912447;	22.4370771
10	YTT10	520125.232796594;	713647.970001077;	22.37953996	520125.232796485;	713647.97000797;	22.3638133
11	YTT11	521363.15129068;	715052.213702974;	22.48641337	521363.151281339;	715052.213730621;	22.569482
12	YTT12	518498.663596491;	716974.489604158;	22.69806547	518498.663595936;	716974.489641336;	22.9511293
13	YTT13	514108.928199661;	717481.663299636;	22.61380567	514108.928201137;	717481.663397287;	22.5929253
14	YTT14	515601.588799851;	717526.274999398;	22.70542529	515601.588808979;	717526.275961109;	22.868333
15	YTT15	516950.750999607;	716775.036400767;	22.6656666	516950.7510017;	716775.036407083;	22.851861
16	YTT16	517138.43110192;	717714.634600756;	22.76961739	517138.431104485;	717714.634610646;	23.058185
17	YTT17	520079.581892186;	717605.081806163;	22.75625371	520079.58188775;	717605.081862575;	23.0669356
18	YTT18	521384.589782752;	$716820.772199095 ;$	22.65590067	521384.589767459;	716820.772291492 ;	22.8672022
19	YTT19	521584.838793279 ;	713648.512600229 ;	22.32802007	521584.838781533;	713648.512604235;	22.2474788
20	YTT20	523697.284691038;	712610.341101032;	22.17827755	523697.284674975;	712610.341115527;	21.9320408
21	YTT21	525256.684295581;	712069.400902666;	22.09307778	525256.684279801;	712069.400939104;	21.7478426
22	YTT22	523497.609891544;	714124.578899686;	22.3578494	523497.609877763;	714124.578999448;	22.304579

Application of Least Absolute Sum (Las) Deformation Detection Method using Coordinate Differences from Different Observational Campaigns

23	YTT23	$525443.708593041 ;$	$714191.748497196 ;$	22.32616293	$525443.708582496 ;$	$714191.748578731 ;$	22.212263
24	YTT24	$527124.733799406 ;$	$713617.755492013 ;$	22.25907939	$527124.733796371 ;$	$713617.755536764 ;$	22.0740095
25	YTT25	$522501.845287421 ;$	$715583.224899734 ;$	22.49919981	$522501.845274277 ;$	$715583.225000239 ;$	22.5282929
26	YTT26	$526736.830187412 ;$	$715474.552392427 ;$	22.45949366	$526736.830178688 ;$	$715474.552433881 ;$	22.4668134
27	YTT27	$527887.037415264 ;$	$714977.706471458 ;$	22.40016023	$527887.037436763 ;$	$714977.706532537 ;$	22.3521075
28	YTT28	$518840.786597038 ;$	$718875.794609559 ;$	22.89331219	$518840.786598495 ;$	$718875.794694225 ;$	23.3294166
29	YTT29	$520145.435490858 ;$	$718953.625408137 ;$	22.9183092	$520145.435486309 ;$	$718953.625481671 ;$	23.4036233
30	YTT30	$522444.869566192 ;$	$719783.514112478 ;$	22.97815103	$522444.869536483 ;$	$719783.514127727 ;$	23.494706
31	YTT31	$522025.385573317 ;$	$718114.274704924 ;$	22.79568104	$522025.385549735 ;$	$718114.274751322 ;$	23.1433067
32	YTT32	$523186.583369713 ;$	$717539.965614425 ;$	22.71579058	$523186.583341969 ;$	$717539.965648825 ;$	22.9760665
33	YTT33	$528705.879517029 ;$	$713817.503986232 ;$	22.26302379	$528705.879534535 ;$	$713817.504864103 ;$	22.0818816
34	YTT34	$528043.110511926 ;$	$712435.484798928 ;$	22.13055794	$528043.110515779 ;$	$712435.484909801 ;$	21.8191489
35	YTT35	$528419.988315911 ;$	$710633.958211361 ;$	21.92731111	$528419.98831332 ;$	$710633.958237693 ;$	21.4137506
36	YTT36	$529967.93452679 ;$	$711032.684607905 ;$	21.95829762	$529967.934544663 ;$	$711032.684711616 ;$	21.4742604
37	YTT37	$528261.861876 ;$	$717210.698619623 ;$	22.63104409	$528261.861862215 ;$	$717210.698704528 ;$	22.8097254
38	YTT38	$526425.689061496 ;$	$718724.127100844 ;$	22.81301857	$526425.689028949 ;$	$718724.127113802 ;$	23.1712292
39	YTT39	$525076.468986405 ;$	$719408.819474891 ;$	22.91308931	$525076.468977532 ;$	$719408.819551119 ;$	23.3689151
40	YTT40	$526225.935350995 ;$	$720282.574474673 ;$	22.98975953	$526225.935307325 ;$	$720282.574549655 ;$	23.5230335
41	YTT41	$528493.426463876 ;$	$718448.80777251 ;$	22.75950388	$528493.426333629 ;$	$718448.807829748 ;$	23.0647514
42	YTT42	$527884.34385114 ;$	720371.80872944	22.9684489	527884.34360357	$720371.80879708 ;$	23.481299
43	YTT43	$523273.527400817 ;$	$721154.484610349 ;$	23.12072684	523273.527204784	721154.484704536	23.78354
44	YTT44	$524356.490404865 ;$	$722381.886575353 ;$	23.23512038	$524356.488142223 ;$	$722381.886658528 ;$	24.0128619
45	YTT45	$525882.380108575 ;$	$722017.811261183 ;$	23.17551393	$525882.380020785 ;$	$722017.811315488 ;$	23.8941837

Initial Checking of Data and Test on Variance Ratio

Before deformation analysis can be carried out, it is important to perform initial checking on the input data and test on the a-posterior variance factors of both epochs (Omogunloye 1988; 1990; 2006 and 2010). This is to ensure that common points, same approximate coordinates and same point's names were used in the two campaigns. The a posteriori variance factors of both epochs were then tested for their compatibility. The null and alternative hypotheses used are as proposed by (Setan 1995; Caspary 1987; Chen et al. 1990; Cooper 1987; Singh 1999)

$$
H_{o}: \sigma_{o 1}^{2}=\sigma_{o 2}^{2}
$$

and

$$
H_{a}: \sigma_{o 1}^{2}>\sigma_{o 2}^{2} \text { or } \sigma_{o 2}^{2}>\sigma_{o 1}^{2}
$$

With $\sigma_{o 1}^{2}$ and $\sigma_{o 2}^{2}$ being the a-posteriori variance factors for the first and second campaigns respectively.

The test statistic is $\boldsymbol{T}=\frac{\sigma_{0 f}^{2}}{\sigma_{n i}^{2}} \sim \mathbf{F}\left(\boldsymbol{\alpha}, \mathbf{d} \boldsymbol{f}_{j}, \mathbf{d} \boldsymbol{f}_{i}\right)$

With j and i representing the larger and smaller variance factors, \mathbf{F} is the Fisher's distribution, α is the chosen significance level (typically $\alpha=0.05$) and $\mathrm{d} \boldsymbol{f}_{\boldsymbol{i}}$ and $\mathbf{d} \boldsymbol{f}_{\boldsymbol{j}}$ are the degrees of freedom for i and j observation campaigns respectively. The above test is accepted if $\boldsymbol{T}<\boldsymbol{F}\left(\alpha, d \boldsymbol{f}_{\boldsymbol{j}}, \mathrm{d} \boldsymbol{f}_{\boldsymbol{i}}\right)$ at a significance level α. The failure of the above test may be caused by incompatible weighting between the two campaign observations or incorrect weighting scheme and any further analysis is stopped at such stage.

TREND ANALYSIS

After the test on the variance ratio, the test is accepted, the displacement vector (coordinates differences) and its cofactor matrix is then computed as follows

$$
\mathbf{d}=\hat{\mathbf{x}}_{2}-\hat{\mathbf{x}}_{1} \quad(90 \times 1 \text { matrix })
$$

$$
\begin{equation*}
\mathbf{Q}_{\mathbf{d}}=\mathbf{Q}_{\widetilde{\mathrm{x}} 1}+\mathbf{Q}_{\widetilde{\mathrm{x}} \overline{2}} \quad(90 \times 90 \text { matrix }) \tag{3.13}
\end{equation*}
$$

\mathbf{d} is the displacement vector, $\mathbf{Q}_{\mathbf{d}}$ is the cofactor matrix of \mathbf{d}, \hat{x}_{1} and $\hat{\chi}_{2}$ are the estimated coordinates of all the common points in the first and second observation epochs respectively (with same datum definition), $\mathbf{Q}_{\widehat{\mathbf{x}} \overline{1}}$ and $\mathbf{Q}_{\widehat{\mathbf{x}} \overline{2}}$ are the cofactor matrix of the estimated coordinates $\hat{\chi}_{1}$ and $\hat{\chi}_{2}$.

Least Absolute Sum (LAS)

Chen, (1983) has proposed a robust method known as Least Absolute Sum (LAS). This robust method was developed at the University of New Brunswick, Canada. In the LAS method, some points in a reference network cannot be accepted as stable .In other words not every point has equal importance .Hence in the beginning, the weight matrix (W) is accepted as $\mathrm{W}=\mathrm{I}$. While datum determines, this indicates that all points in the network have the same importance. Therefore, the solution is similar to the Helmert transformation, if some points are given unit weight and the others a zero weight, that is, $\mathrm{W}=\operatorname{diag}(\mathrm{I}, \mathrm{O})$.

The LAS methods are used when there is no previous information about the movement of points within the network.

$$
\begin{equation*}
d^{k+1}=\left[\mathbf{I}-\mathbf{H}\left(\mathbf{H}^{\mathrm{T}} \mathbf{W}^{(k)} \mathbf{H}\right)^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{W}^{(\mathrm{k})}\right] \mathrm{d}^{\mathbf{k}}=\mathbf{S}^{(\mathrm{k})} \mathbf{d}^{(\mathrm{k})} \tag{3.14}
\end{equation*}
$$

$I=$ identity matrix
$k=$ number of iterations
$d=$ displacement vector
$S=$ S-transformations matrix
$W=$ weight matrix
Then displacement values (d) are calculated as:

$$
\begin{align*}
& d_{1}=S_{1} d \tag{3.15}\\
& Q d_{1}=S Q_{d} S^{T} \tag{3.16}\\
& S=I-H\left(H^{T} W H\right)^{-1} H^{T} W \tag{3.17}\\
& d_{2}=S_{2} d_{1} \tag{3.18}\\
& Q d_{2}=S_{2} Q_{d} S_{2}^{T} \tag{3.19}
\end{align*}
$$

where d_{1} and $Q_{d 1}$ are the displacement vector and its cofactor matrix respectively based on the new datum or computational base, H is the inner constraints matrix constructed depending on the union of the datum defects in the two epochs and on the number of common points, and W is the weight matrix with diagonal value of one for datum points and zero elsewhere. Matrix S is symmetric only for the minimum trace solutions. (i.e., all points in the network were defined as datum).The group of selected datum points is then tested for its stability by using Single Point displacement test.

Formation of Matrix H for the Final S-Transformation

H is a configuration matrix for the datum defect, called inner constraint matrix. Basically, the matrix \mathbf{H} depends on the type of network: 1D, 2D or 3D. For 1D, 2D and 3D networks, H is having maximum dimensions of (1 m by 1), (2 m by 4) and (3m by 7) respectively, where m is the number of stations.

Equation (3.20) shows the components of the matrix H for a $1 D$ network $\mathrm{H}^{\mathrm{T}}=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 \ldots \ldots\end{array} \quad(1 \times 45\right.$ matrix $) \quad$ [3.20]

For 2D surveying networks, the first two rows of the matrix H represent the translations in the
x and y directions ($\boldsymbol{t x}$ and $\boldsymbol{t} \boldsymbol{y}$), the third row defines the rotation about the z axis $(r z)$ and the last row is the scale of the network. Equation (3.2.4.1) shows the components of the matrix H for a

2D network $\boldsymbol{H}^{T}\left[\begin{array}{ccccccc} & & & & & & \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{1} \\ 0 & \mathbf{1} & \mathbf{0} & \mathbf{1} & \cdots & \mathbf{1} & \mathbf{0} \\ \boldsymbol{y}_{1}^{o} & -\boldsymbol{x}_{1}^{o} & y_{2}^{o} & -\boldsymbol{x}_{2}^{o} & \cdots & -y_{m}^{o} & -\boldsymbol{x}_{m}^{o} \\ \boldsymbol{x}_{1}^{o} & \boldsymbol{y}_{1}^{o} & x_{2}^{o} & y_{2}^{o} & \cdots & \boldsymbol{x}_{m}^{o} \boldsymbol{c} & \boldsymbol{y}_{m}^{o}\end{array}\right] \quad$ (4 $\times 90$ matrix)

Where $\boldsymbol{x}_{\boldsymbol{i}}^{o}$ and $\boldsymbol{y}_{i}^{o}, \boldsymbol{z}_{\boldsymbol{i}}^{o}$ are the coordinates of point $\boldsymbol{p}_{\boldsymbol{i}}$ which are reduced to the centroid or centre of gravity of the network, i.e.,

$$
\begin{array}{ll}
x_{i}^{o}=x_{i}-\frac{\left(\sum_{i=1}^{m} x_{i}\right)}{m} & (90 \times 1 \text { matrix }) \tag{3.22}\\
y_{i}^{o}=y_{i}-\frac{\left(\sum_{i=1}^{m} y_{i}\right)}{m} & (90 \times 1 \text { matrix })
\end{array}
$$

With x_{i}, y_{i}, the approximate coordinates of point p_{i} and m is the number of common points in the network. (Kuang, 1996; Ozturk and Serbetci, 1992; Singh and Setan , 2001).The first two rows of the inner constraint matrix $\left(\boldsymbol{H}^{\boldsymbol{T}}\right)$ take care of the translations in the x and y directions, while the third row defines the rotation about the vertical (Z) axis and the last row defines the scale of the network. For a trilateration network, the last row of H^{T} is omitted (Caspary 1987; Cooper and Cross 1991; Setan 1997; Chen et al. 1990; Singh 1999).In the first transformation $(k=1)$ the weight matrix is taken as identity $\left(W^{(K)}=l\right)$ for all the common points, this indicates that all the points in the network have the same importance. The weight matrix for LAS
$\mathrm{W}^{\mathrm{K}}=\operatorname{diag}$
The iterative procedure continues until the absolute differences between the successive transformed displacements of all the comation pqints i.e

[3.25]

are smaller than a tolerance value δ (say 0.001 m). It is possible that during the iterations some dxi, dyi, dzi may approach zero causing numerical instability because W^{K} becomes very large. There are two ways to solve this problem, either
\checkmark Setting a lower bound value e.g 0.0001 m . If $\mathrm{d}_{\mathrm{j}}{ }^{(\mathrm{k})}$ is smaller than the lower bound value, its weight is set to zero, or replacing equation [3.26] as

Where dicks is the δ component of the vector dk after kth iteration.
In this study the Least Absolute Sum minimizes the sum of the lengths of the displacements i.e

$$
\begin{equation*}
\Sigma \sqrt{(d x i)^{2}+(d y i)^{2}} \quad \longrightarrow \quad \text { minimum } \tag{3.27}
\end{equation*}
$$

In the final iteration, the cofactor matrix of the displacement vector is computed as

$$
\begin{equation*}
\boldsymbol{Q}_{d}{ }^{k+1}=\boldsymbol{S}^{(k)} \boldsymbol{Q}_{d}\left(\boldsymbol{S}^{(k)}\right)^{T} \quad(90 x 90 \text { matrix }) \tag{3.28}
\end{equation*}
$$

For 1D networks, there are some differences for the calculation of d^{\prime} and Q_{d} '. First, the displacements d are arranged in increasing order. The median is assigned unit weight 1 and zero weight is assigned to the other displacements d. If the total number of d is an even number, the two middle (median) displacements d are assigned unit weight 1 and zero weight is assigned to the other displacements d, Then, the new vector of displacements d ' and its cofactor matrix
$d^{\prime}=\min \sum\left|d_{i}-t z\right| \Rightarrow$
$Q_{d}{ }^{2}=S Q_{d}(S)^{T}$
where tz is the mean value of the middle displacements and di is the displacement of point i.
$\mathrm{S}=\mathrm{I}-\mathrm{H}\left(\mathrm{H}^{\mathrm{T}} \mathrm{WH}\right)^{-1} \mathrm{H}^{\mathrm{T}} \mathrm{W}$

The stability information of each common point j is then determined through a single point test as below (Setan 1995; Setan and Singh 1998)

$$
\begin{equation*}
T_{j}=\frac{\left.\left(d_{j}^{(k+1)}\right)^{T}\left(Q_{d} j^{(k+1)}\right)^{n-1} d_{j}^{(k+1)}\right)}{2 \sigma_{o}^{2}} \sim F(\alpha, 2, \mathrm{df}) \tag{3.30}
\end{equation*}
$$

Where;
$\boldsymbol{d}_{j}, \boldsymbol{Q}_{\boldsymbol{d} j}=$ displacement vector and its cofactor matrix respectively for each common point j or pooled variance factor.
$\boldsymbol{\sigma}_{o}^{2}=\frac{\left[d f_{1}\left(\sigma_{0}^{2}\right)+d f_{2}\left(\sigma_{o v 2}^{2}\right)\right]}{d f}$, common or pool variance factor
$\left(\boldsymbol{\sigma}_{o 1}^{2}\right),\left(\sigma_{o z}^{2}\right)=$ a posteriori variance factors of first and second epochs respectively
$\boldsymbol{d} \boldsymbol{f}_{1}, \boldsymbol{d} \boldsymbol{f}_{\mathbf{2}}=$ degrees of freedom of first and second epochs
$\boldsymbol{d} \boldsymbol{f}=\boldsymbol{d} \boldsymbol{f}_{1}+\boldsymbol{d} \boldsymbol{f}_{\mathbf{2}}$, sum of degrees of freedom of first and second epochs
$=$ significance level (usually chosen as 0.05)

If the above test passes (i.e., $\boldsymbol{T}_{j}<F(\alpha, 2, d f)$) then the point is assumed to be stable at a significance level α. Otherwise, if the test fails (i.e., $\boldsymbol{T}_{\boldsymbol{j}} \geq \mathbf{F}(\boldsymbol{\alpha}, \mathbf{2}, \mathbf{d f})$) then the point is assumed to be deformed (moved).

RESULTS AND DATA ANALYSIS

Table 4.1a: 2D (X, Y) Network Adjustment Summary

PARAMETER	FIRST EPOCH	SECOND EPOCH
Datum Definitions	2	2
No of Station	45	45
No of Observation (\boldsymbol{n})	189	189
No of Parameters (\boldsymbol{m})	90	90
Degree of Freedom (df- $\boldsymbol{n}-\boldsymbol{m}$)	99	99

Journal of Engineering and Applied Scientific Research			Volume 8 , Number 1, 2016
Convergence Limit	0.00001	0.00001	
A-posteriori Variance (σ)	7.82989325645394e08	$7.96836000130844 \mathrm{e}-$ 08	
Trace of the Covariance Matrix of the Adjusted parameter	$\begin{aligned} & \text { 5.183975843652210e- } \\ & 06 \end{aligned}$	$5.27565084002794 \mathrm{e}-$ 06	
Trace of the Adjusted Observation Matrix	$\begin{aligned} & 7.04690393080854 \mathrm{e}- \\ & 06 \end{aligned}$	$7.17152400117759 \mathrm{e}-$06	

Table 4.1b: 1D (Height) Network Adjustment Summary

PARAMETER	FIRST EPOCH	SECOND EPOCH
Datum Definitions	2	2
No of Station	45	45
No of Observation (n)	107	107
No of Parameters (m)	45	45
Degree of Freedom (df- $n-m$)	62	62
A-posteriori Variance (σ)	0.0394472461577893	
Trace of the Covariance Matrix of the Adjusted parameter	1.040613555969225	4.018695177022139
Trace of the Adjusted Observation Matrix	1.77512607710052	6.85527356791522

Deformation Analysis Result

After the network adjustment, the obtained results, especially the adjusted coordinates and the cofactor matrices were used for the computation of the
displacement vector and the cofactor matrix of the displacement vector. The trend analysis and deformation detection were carried out using the LAS method. At the degrees of freedom of the epoch, the Fisher's critical value obtained at 0.05 (95%) significant level is 1.39 . The result of the variance ratio test of the two epochs shows the test statistic (T) value is 1.020884677924254 . The displacement vector (d), cofactor matrix of the displacement vector (Qd), the inner constraint matrix (H), weight matrix (W), S-transformation matrix (S) and other parameters of the LAS were all computed. The results of the displacement vector (d) after adjustment of the network, the first iteration displacement vector (d1) and the second iteration displacement vector (d2) after transformation by Least Absolute Sum method the final single point displacement (dp) are as shown in Table 4.2 , Table 4.3, and Table 4.4.

Volume 8, Number 1, 2016

Table 4.2: Displacement Vector of the 1D Network and Stable and Unstable Point

 Displacement| S/N | CONTROL
 POINT
 NAME | Displacement Vector | Displacement Vector on a
 New Computational Base
 After S- Transformation | | Single Point
 Displacement | $\begin{aligned} & \mathrm{PT}<\mathrm{Fi} \\ & (0.05,2, \mathrm{df}) \\ & \mathrm{PT}<1.550 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\mathrm{d}_{1}=\mathrm{S}_{1} \mathrm{~d}$ | $\mathrm{d}_{1}=\mathrm{S}_{2} \mathrm{~d}_{1}$ | | $\mathrm{PT}<1.550$ |
| | | dZ(m) | dz1 | dz2 | PTPz | |
| 1 | YTT1 | -0.01992 | -0.62106 | -0.54265 | 0.811994 | Stable |
| 2 | YTT2 | -0.07401 | -0.59154 | -0.51313 | 0.988851 | Stable |
| 3 | YTT3 | -0.29582 | -0.45274 | -0.37433 | 0.592596 | Stable |
| 4 | YTT4 | -0.13988 | -0.41891 | -0.3405 | 0.648932 | Stable |
| 5 | YTT5 | 0.009162 | -0.40332 | -0.32491 | 0.600531 | Stable |
| 6 | YTT6 | -0.14814 | -0.35374 | -0.27533 | 0.409578 | Stable |
| 7 | YTT7 | -0.10665 | -0.29257 | -0.21416 | 0.261906 | Stable |
| 8 | YTT8 | 0.129087 | -0.28865 | -0.21024 | 0.306232 | Stable |
| 9 | YTT9 | 0.001505 | -0.25564 | -0.17723 | 0.191986 | Stable |
| 10 | YTT10 | -0.01573 | -0.24738 | -0.16897 | 0.189104 | Stable |
| 11 | YTT11 | 0.083069 | -0.2214 | -0.14299 | 0.147021 | Stable |
| 12 | YTT12 | 0.253064 | -0.21416 | -0.13575 | 0.13268 | Stable |
| 13 | YTT13 | -0.02088 | -0.18804 | -0.10963 | 0.070051 | Stable |
| 14 | YTT14 | 0.162908 | -0.18152 | -0.10311 | 0.068049 | Stable |
| 15 | YTT15 | 0.186194 | -0.16077 | -0.08236 | 0.044635 | Stable |
| 16 | YTT16 | 0.288568 | -0.15556 | -0.07715 | 0.040944 | Stable |
| 17 | YTT17 | 0.310682 | -0.12838 | -0.04997 | 0.021027 | Stable |
| 18 | YTT18 | 0.211302 | -0.12742 | -0.04901 | 0.021141 | Stable |
| 19 | YTT19 | -0.08054 | -0.12323 | -0.04482 | 0.017767 | Stable |
| 20 | YTT20 | -0.24624 | -0.106 | -0.02759 | 0.012284 | Stable |
| 21 | YTT21 | -0.34524 | -0.10018 | -0.02177 | 0.013732 | Stable |
| 22 | YTT22 | -0.05327 | -0.09834 | -0.01993 | 0.003962 | Stable |
| 23 | YTT23 | -0.1139 | -0.07841 | 0 | 0 | Stable |
| 24 | YTT24 | -0.18507 | -0.02444 | 0.053976 | 0.079391 | Stable |
| 25 | YTT25 | 0.029093 | 0.021583 | 0.099994 | 0.108622 | Stable |
| 26 | YTT26 | 0.00732 | 0.055404 | 0.133815 | 0.308231 | Stable |
| 27 | YTT27 | -0.04805 | 0.071178 | 0.149588 | 0.449503 | Stable |
| 28 | YTT28 | 0.436104 | 0.078691 | 0.157101 | 0.183723 | Stable |
| 29 | YTT29 | 0.485314 | 0.103798 | 0.182208 | 0.321928 | Stable |
| 30 | YTT30 | 0.516555 | 0.14556 | 0.223971 | 0.528426 | Stable |

Application of Least Absolute Sum (Las) Deformation Detection Method using Coordinate Differences from Different Observational Campaigns

31	YTT31	0.347626	0.152772	0.231183	0.514461	Stable
32	YTT32	0.260276	0.181064	0.259474	0.756523	Stable
33	YTT33	-0.18114	0.197744	0.276154	1.883885	Moved
34	YTT34	-0.31141	0.203178	0.281589	2.125777	Moved
35	YTT35	-0.51356	0.240122	0.318533	2.76796	Moved
36	YTT36	-0.48404	0.250707	0.329118	2.839587	Moved
37	YTT37	0.178681	0.328601	0.407011	2.594411	Moved
38	YTT38	0.358211	0.348322	0.426733	2.418916	Moved
39	YTT39	0.455826	0.37781	0.456221	2.445382	Moved
40	YTT40	0.533274	0.405347	0.483757	2.887476	Moved
41	YTT41	0.305247	0.409051	0.487462	3.288789	Moved
42	YTT42	0.51285	0.42577	0.504181	3.274917	Moved
43	YTT43	0.662813	0.55531	0.63372	4.707015	Moved
44	YTT44	0.777741	0.611166	0.689577	5.687355	Moved
45	YTT45	0.71867	0.670238	0.748648	6.843486	Moved

Volume 8,
Number 1,
2016
Table 4.3: The Displacement Vector Pattern of the Epoch Data using LAS

		Displacement Vector (d)		Displacement Vector on Transformation By LAS		a New	mputation	$\text { Base After } \mathrm{S} \text { - }$	Single Point Displacement (PTp)	
				Displacement Vector$\left(\mathbf{d}_{1}=\mathbf{S}_{1} \mathbf{d}\right)$		Displacement Vector $\left(\mathrm{d}_{2}=\mathrm{S}_{2} \mathrm{~d}_{1}\right)$				
S/N	$\begin{aligned} & \text { CONTROL } \\ & \text { POINT } \\ & \text { NAME } \\ & \hline \end{aligned}$	dX(m)	dY(m)	d1(X)	d1(Y)	d2(X)	d2(Y)	$\begin{array}{\|l} \hline \text { MAGNITUDE } \\ \sqrt{\left(\mathbf{d} 2(X)^{2}\right.} \\ \left.\mathbf{d} 2(\mathbf{Y})^{2}\right) \\ \hline \end{array}$	PTp (X)	PTP(Y)
1	YTT1	$2.77 \mathrm{E}-06$	$2.59 \mathrm{E}-05$	$7.20 \mathrm{E}-06$	-3.17E-05	$4.25 \mathrm{E}-08$	-3.88E-05	$3.880 \mathrm{E}-05$	0.000164	0.794432
2	YTT2	$3.14 \mathrm{E}-06$	-0.00011	$2.26 \mathrm{E}-05$	$5.17 \mathrm{E}-05$	$1.54 \mathrm{E}-05$	$4.46 \mathrm{E}-05$	$4.718 \mathrm{E}-5$	0.186669	1.069351
3	YTT3	-2.97E-06	0.000105	$-2.08 \mathrm{E}-05$	$2.24 \mathrm{E}-05$	-2.79E-05	$1.52 \mathrm{E}-05$	$3.177 \mathrm{E}-05$	0.456962	0.080737
4	YTT4	$1.48 \mathrm{E}-05$	-0.00031	$1.11 \mathrm{E}-05$	0.000886	$3.96 \mathrm{E}-06$	0.000879	$8.79 \mathrm{E}-04$	0.007146	4.246152
5	YTT5	$5.70 \mathrm{E}-06$	0.000124	$1.44 \mathrm{E}-05$	-7.86E-05	$7.20 \mathrm{E}-06$	-8.58E-05	8.61 E-05	0.024044	4.110841
6	YTT6	$5.83 \mathrm{E}-06$	$4.10 \mathrm{E}-05$	$2.28 \mathrm{E}-05$	-0.0001	$1.57 \mathrm{E}-05$	-0.00011	$1.570 \mathrm{E}-05$	0.111269	7.19099
7	YTT7	-6.33E-06	0.000162	$-1.23 \mathrm{E}-05$	$3.08 \mathrm{E}-05$	-1.94E-05	$2.36 \mathrm{E}-05$	3.053 E-05	0.16821	0.31783
8	YTT8	$2.35 \mathrm{E}-06$	0.000133	$2.19 \mathrm{E}-05$	-6.77E-05	$1.48 \mathrm{E}-05$	-7.48E-05	7.625 E-05	0.103594	3.158588
9	YTT9	$6.08 \mathrm{E}-07$	$3.72 \mathrm{E}-05$	$2.54 \mathrm{E}-05$	-8.51E-05	$1.83 \mathrm{E}-05$	-9.22E-05	$9.399 \mathrm{E}-05$	0.157434	4.870269
10	YTT10	-1.09E-07	$2.52 \mathrm{E}-05$	$3.17 \mathrm{E}-05$	-0.00011	$2.46 \mathrm{E}-05$	-0.00011	$1.127 \mathrm{E}-05$	0.293329	7.62088
11	YTT11	-9.34E-06	$8.80 \mathrm{E}-05$	$4.08 \mathrm{E}-05$	-8.36E-05	$3.37 \mathrm{E}-05$	-9.07E-05	9.675 E-05	0.565388	4.660503
12	YTT12	-5.55E-07	$8.99 \mathrm{E}-05$	$3.97 \mathrm{E}-05$	-4.13E-05	$3.26 \mathrm{E}-05$	-4.84E-05	5.835 E-05	0.521227	1.323015
13	YTT13	$1.48 \mathrm{E}-06$	$1.26 \mathrm{E}-05$	$1.12 \mathrm{E}-05$	$5.07 \mathrm{E}-05$	$4.09 \mathrm{E}-06$	$4.35 \mathrm{E}-05$	5.970 E-05	0.010728	0.872408
14	YTT14	$9.13 \mathrm{E}-06$	-0.00053	$3.06 \mathrm{E}-05$	0.000906	$2.35 \mathrm{E}-05$	0.000899	8.993 E-05	0.300271	4.536646
15	YTT15	$2.09 \mathrm{E}-06$	-6.81E-05	$2.92 \mathrm{E}-05$	-6.40E-05	$2.21 \mathrm{E}-05$	-7.11E-05	7.4455 E-05	0.236805	2.868241
16	YTT16	$2.56 \mathrm{E}-06$	$1.83 \mathrm{E}-05$	$3.71 \mathrm{E}-05$	-5.43E-05	$2.99 \mathrm{E}-05$	-6.15E-05	6.838 E-05	0.452714	2.130441
17	YTT17	-4.44E-06	0.00011	$5.19 \mathrm{E}-05$	-2.71E-05	$4.48 \mathrm{E}-05$	-3.43E-05	5.642 E-05	0.986544	0.649148
18	YTT18	-1.53E-05	-4.11E-6	$4.62 \mathrm{E}-05$	-5.38E-06	$3.90 \mathrm{E}-05$	-1.25E-05	$2.337 \mathrm{E}-05$	0.760024	0.086324
19	YTT19	-1.17E-05	$6.57 \mathrm{E}-05$	$3.13 \mathrm{E}-05$	-0.00012	$2.42 \mathrm{E}-05$	-0.00013	$1.3223 \mathrm{E}-04$	0.297002	9.061258
20	YTT20	-1.61E-05	0.00012	$3.67 \mathrm{E}-05$	-0.00013	$2.95 \mathrm{E}-05$	-0.00014	$1.43 \mathrm{E}-04$	0.466251	1.066337

Application of Least Absolute Sum (Las) Deformation Detection Method using Coordinate Differences from Different Observational Campaigns

21	YTT21	-1.58E-05	0.000264	$4.55 \mathrm{E}-05$	-0.00012	$3.84 \mathrm{E}-05$	-0.00013	1.3555 E-04	0.821701	9.233006
22	YTT22	-1.38E-05	$5.46 \mathrm{E}-05$	$4.70 \mathrm{E}-05$	-3.20E-05	3.98E-05	-3.91E-05	$5.607 \mathrm{E}-05$	0.809365	0.851019
23	YTT23	-1.05E-05	$7.04 \mathrm{E}-05$	$6.56 \mathrm{E}-05$	-6.19E-05	$5.84 \mathrm{E}-05$	-6.91E-05	$9.047 \mathrm{E}-05$	1.865367	2.618017
24	YTT24	-3.03E-06	0.000137	$8.24 \mathrm{E}-05$	-0.00011	$7.52 \mathrm{E}-05$	-0.00012	1.4161 E-04	3.129756	7.668884
25	YTT25	-1.31E-05	$5.91 \mathrm{E}-05$	$4.91 \mathrm{E}-05$	-1.38E-05	$4.20 \mathrm{E}-05$	-2.09E-05	4.691 E-05	0.899676	0.243445
26	YTT26	-8.72E-06	$2.74 \mathrm{E}-05$	$8.54 \mathrm{E}-05$	-0.0001	$7.82 \mathrm{E}-05$	-0.00011	1.3496 E-04	3.326455	6.232521
27	YTT27	$2.15 \mathrm{E}-05$	-0.00021	0.000121	-9.17E-05	0.000114	$-9.89 \mathrm{E}-05$	$1.509 \mathrm{E}-04$	7.224628	5.070011
28	YTT28	$1.46 \mathrm{E}-06$	0.000112	$5.63 \mathrm{E}-05$	$1.86 \mathrm{E}-05$	$4.92 \mathrm{E}-05$	$1.15 \mathrm{E}-05$	$5.0526 \mathrm{E}-05$	1.190501	0.07579
29	YTT29	-4.55E-06	0.000126	$6.08 \mathrm{E}-05$	-8.46E-08	$5.36 \mathrm{E}-05$	-7.24E-06	$5.408 \mathrm{E}-05$	1.420155	0.028761
30	YTT30	-2.97E-05	0.000272	$5.85 \mathrm{E}-05$	-6.64E-05	$5.14 \mathrm{E}-05$	-7.36E-05	8.97714 E-05	1.386828	2.965948
31	YTT31	-2.36E-05	0.000111	$5.09 \mathrm{E}-05$	-4.55E-05	$4.38 \mathrm{E}-05$	$-5.26 \mathrm{E}-05$	5.661 E-05	0.975635	1.507281
32	YTT32	-2.77E-05	0.000331	$5.21 \mathrm{E}-05$	-6.92E-05	$4.49 \mathrm{E}-05$	-7.63E-05	8.853 E-05	1.042566	3.237843
33	YTT33	$1.75 \mathrm{E}-05$	-0.00018	0.000116	0.000711	0.000109	0.000704	$1.297 \mathrm{E}-04$	6.784533	2.442919
34	YTT34	$3.85 \mathrm{E}-06$	0.000319	$8.89 \mathrm{E}-05$	-6.24E-05	$8.17 \mathrm{E}-05$	-6.96E-05	$10.732 \mathrm{E}-05$	3.947721	2.469739
35	YTT35	$-2.59 \mathrm{E}-06$	0.000591	$7.40 \mathrm{E}-05$	-0.00016	$6.68 \mathrm{E}-05$	-0.00017	$1.833 \mathrm{E}-04$	2.844835	1.500624
36	YTT36	$1.79 \mathrm{E}-05$	0.000657	0.000109	-9.24E-05	0.000102	-9.96E-05	$1.4256 \mathrm{E}-04$	6.39048	4.741311
37	YTT37	-1.38E-05	-0.00113	0.000103	-5.31E-05	$9.58 \mathrm{E}-05$	-6.02E-05	$11.314 \mathrm{E}-05$	5.015102	1.936708
38	YTT38	-3.25E-05	0.000115	$7.96 \mathrm{E}-05$	-0.0001	$7.24 \mathrm{E}-05$	-0.00011	$7.240 \mathrm{E}-05$	2.885911	6.487339
39	YTT39	-8.87E-06	0.001186	$9.72 \mathrm{E}-05$	$-2.49 \mathrm{E}-05$	$9.00 \mathrm{E}-05$	-3.20E-05	$9.5519 \mathrm{E}-05$	4.402552	0.566615
40	YTT40	-4.37E-05	0.002614	$7.67 \mathrm{E}-05$	-2.66E-05	$6.95 \mathrm{E}-05$	$-3.38 \mathrm{E}-05$	7.728 E-05	2.663538	0.634454
41	YTT41	-0.00013	-0.00189	-3.99E-06	-7.27E-05	-1.12E-05	$-7.99 \mathrm{E}-05$	8.068 E-05	0.068964	3.45412
42	YTT42	-0.00025	0.00043	0.000201	-0.00036	0.000194	-0.00037	4.1778 E-05	2.121703	7.28967
43	YTT43	-0.0002	-0.00133	-9.28E-05	$1.78 \mathrm{E}-05$	-1.00E-04	$1.06 \mathrm{E}-05$	1.00498 E-04	5.378697	0.062547
44	YTT44	-0.00226	0.016168	-0.00214	$9.41 \mathrm{E}-06$	-0.00215	$2.25 \mathrm{E}-06$	2.1500 E-03	2.257432	0.002949
45	YTT45	-8.78E-05	-0.00057	$4.08 \mathrm{E}-05$	-3.18E-05	$3.37 \mathrm{E}-05$	-3.90E-05	$5.154 \mathrm{E}-05$	0.621957	0.823719

Table 4.4: The Stable and Unstable Point Detection

		Displacement Vector(d2)		Stable and Unstable Point (Single Point Displacement) Using LAS					
		Single Point Displacement$\begin{aligned} & \text { PT- }=\left[\left(\mathrm{d} p^{\prime} \cdot \operatorname{inv}(\mathrm{Qdp}) \bullet \mathrm{dp}\right) /\right. \\ & \left.\left(2^{\bullet} \mathrm{pv}\right)\right] \end{aligned}$	$\begin{aligned} & \mathrm{PT}<\mathrm{Fi}(0.05,2, \mathrm{df}) \\ & \mathrm{PT}<1.390 \end{aligned}$						
S/N	CONTROL POINT NAME			d2(X)	d2(Y)	PTp (X)	PTP(Y)	(X)	(Y)
1	YTT1	4.25E-08	-3.88E-05	0.000164	0.794432	Stable	Stable		
2	YTT2	1.54E-05	4.46E-05	0.186669	1.069351	Stable	Stable		
3	YTT3	-2.79E-5	1.52E-05	0.456962	0.080737	Stable	Stable		
4	YTT4	3.96E-06	0.000879	0.007146	4.246152	Stable	Moved		
5	YTT5	7.20E-06	-8.58E-05	0.024044	4.110841	Stable	Moved		
6	YTT6	1.57E-05	-0.00011	0.111269	7.19099	Stable	Moved		
7	YTT7	-1.94E-5	$2.36 \mathrm{E}-05$	0.16821	0.31783	Stable	Stable		
8	YTT8	1.48E-05	-7.48E-05	0.103594	3.158588	Stable	Moved		
9	YTT9	$1.83 \mathrm{E}-05$	-9.22E-05	0.157434	4.870269	Stable	Moved		
10	YTT10	2.46E-05	-0.00011	0.293329	7.62088	Stable	Moved		
11	YTT11	$3.37 \mathrm{E}-05$	-9.07E-05	0.565388	4.660503	Stable	Moved		
12	YTT12	3.26E-05	-4.84E-05	0.521227	1.323015	Stable	Stable		
13	YTT13	4.09E-06	4.35E-05	0.010728	0.872408	Stable	Stable		
14	YTT14	$2.35 \mathrm{E}-05$	0.000899	0.300271	4.536646	Stable	Moved		
15	YTT15	2.21E-05	-7.11E-05	0.236805	2.868241	Stable	Moved		
16	YTT16	$2.99 \mathrm{E}-05$	-6.15E-05	0.452714	2.130441	Stable	Moved		
17	YTT17	4.48E-05	-3.43E-05	0.986544	0.649148	Stable	Stable		
18	YTT18	3.90E-05	-1.25E-05	0.760024	0.086324	Stable	Stable		
19	YTT19	2.42E-05	-0.00013	0.297002	9.061258	Stable	Moved		
20	YTT20	$2.95 \mathrm{E}-05$	-0.00014	0.466251	1.066337	Stable	Moved		
21	YTT21	3.84E-05	-0.00013	0.821701	9.233006	Stable	Moved		
22	YTT22	3.98E-05	-3.91E-05	0.809365	0.851019	Stable	Stable		
23	YTT23	$5.84 \mathrm{E}-05$	-6.91E-05	1.865367	2.618017	Moved	Moved		
24	YTT24	7.52E-05	-0.00012	3.129756	7.668884	Moved	Moved		
25	YTT25	4.20E-05	-2.09E-05	0.899676	0.243445	Stable	Stable		
26	YTT26	7.82E-05	-0.00011	3.326455	6.232521	Moved	Moved		
27	YTT27	0.000114	-9.89E-05	7.224628	5.070011	Moved	Moved		
28	YTT28	4.92E-05	1.15E-05	1.190501	0.07579	Stable	Stable		
29	YTT29	5.36E-05	$-7.24 \mathrm{E}-06$	1.420155	0.028761	Moved	Stable		
30	YTT30	$5.14 \mathrm{E}-05$	-7.36E-05	1.386828	2.965948	Stable	Moved		

31	YTT31	$4.38 \mathrm{E}-05$	$-5.26 \mathrm{E}-05$	0.975635	1.507281	Stable	Moved
32	YTT32	$4.49 \mathrm{E}-05$	$-7.63 \mathrm{E}-05$	1.042566	3.237843	Stable	Moved
33	YTT33	0.00010	0.000704	6.784533	2.442919	Moved	Moved
34	YTT34	$8.17 \mathrm{E}-05$	$-6.96 \mathrm{E}-05$	3.947721	2.469739	Moved	Moved
35	YTT35	$6.68 \mathrm{E}-05$	-0.00017	2.844835	1.500624	Moved	Moved
36	YTT36	0.000102	$-9.96 \mathrm{E}-05$	6.39048	4.741311	Moved	Moved
37	YTT37	$9.58 \mathrm{E}-05$	$-6.02 \mathrm{E}-05$	5.015102	1.936708	Moved	Moved
38	YTT38	$7.24 \mathrm{E}-05$	-0.00011	2.885911	6.487339	Moved	Moved
39	YTT39	$9.00 \mathrm{E}-05$	$-3.20 \mathrm{E}-05$	4.402552	0.566615	Moved	Stable
40	YTT40	$6.95 \mathrm{E}-05$	$-3.38 \mathrm{E}-05$	2.663538	0.634454	Moved	Stable
41	YTT41	$-1.12 \mathrm{E}-5$	$-7.99 \mathrm{E}-05$	0.068964	3.45412	Stable	Moved
42	YTT42	0.000194	-0.00037	2.121703	7.28967	Moved	Moved
43	YTT43	$-1.00 \mathrm{E}-4$	$1.06 \mathrm{E}-05$	5.378697	0.062547	Moved	Stable
44	YTT44	-0.00215	$2.25 \mathrm{E}-06$	2.257432	0.002949	Moved	Stable
45	YTT45	$3.37 \mathrm{E}-05$	$-3.90 \mathrm{E}-05$	0.621957	0.823719	Stable	Stable

ANALYSIS OF RESULTS

After the presentation of results, the results were analysed as shown in the sub session below.

Trend and Deformation Analysis of the Displacements Using LAS Method

After the Least Square Estimation (LSE) of the data of the network, the compatibility of the two epochs data was tested with the variance ratio and compatibility test passed. The computed variance ratio of the campaigns is lesser than the Fdistribution critical value for the specified confidence level. The critical value for the 0.05 (95\%) significance level chosen for the Fisher's distribution (F) is 1.390 . The test statistic (T), which is the ratio of the variances (the larger divided by the small passed. The test on the variance ratio passes at 0.05 significance level (i.e., $1.02088467792425<1.390$) of the Fisher's critical value, thus indicating the compatibility between the two epochs and permits further analysis to be carried out for deformation detection and analysis. For the 1D network, the critical value the $0.05(95 \%)$ significance level chosen for the Fisher's distribution (F) is 1.550 and it also passes the compatibility test.

The trends of movements and deformation analysis of the monitoring network was done using the adjusted coordinate differences and the cofactor matrices from both campaigns respectively and by applying the LAS method. The 1D and 2D point coordinates X, Y of each epoch and their cofactor matrices were calculated with two separate network adjustments. The Deformation program calculated displacement in X axis ($d X$), Y axis ($d Y$) and ($d Z$).

The LAS determined the final displacement vector (dp). The data met the convergence criteria after two iterations. The displacement values obtained from the differences of the adjusted coordinates and their transformation by LAS method shows that virtually all the stations have undergone movements' overtime but this however did not result in deformation of all the point to a significant level. The single point displacement test failed for some points thus confirming the existence of deformation for some of the group of selected control points. The summary of the parameters of the deformation detection and analysis for 2D and 1D are shown in Table 4.4 and Table 4.5 respectively. The results is emphasized by the plot of single point displacement vectors ,the stable and unstable points and the relative absolute error ellipse of the 45 stations in the network as represented in Figures 4 .1, 4.2, and 4.3.

Table 4.4: Summary of some Key Parameters of the Deformation Detection and Analysis (2D)

KEY PARAMETERS	
	LAS
No of Iteration	2
Fisher's Distribution Critical Value fo 95\% Confidence Level (F)	1.390
Calculated Variance Rati (T-rho1/rho2)	1.02088467792425
The Compatibility Test Passed (T<F)	$1.02088467792425<$
	$1.390)$
Pooled Variance Factors	$7.77532847804672 e^{-}$
	08
Combined Degree of Freedom	99

Table 4.5: Summary of some Key Parameters of the Deformation Detection and Analysis (1D)

KEY PARAMETERS	SINGLE POINT DISPLACEMENT
No of Iteration	2
Fisher's Distribution Critical Value fo. 95\% Confidence Level (F)	1.550
Calculated Variance Rati (T=rho1/rho2)	1.327053753
The Compatibility Test Passed (T<F)	$1.327053753<1.550)$
Pooled Variance Factors	0.0958933293890637
Combined Degree of Freedom	62

Figure 4.1: Displacement Vector Pattern after S-Transformation using LAS

Figure 4.2: Displacement Vector Magnitude of the Stations using LAS
 using Coordinate Differences from Different Observational Campaigns

Figure 4.3: Relative Absolute Error Ellipse of the 45 Stations in the Lagos State Secondary Control Network

CONCLUSIONS

This study has presented successfully the deformation study of a geodetic monitoring network using two epochs data. The major focus has been on the identification of stable and unstable points in the network. The following conclusions are drawn from the study;
> The two epoch data were adjusted by the least square adjustment technique and passed the compatibility test and are therefore compatible.
$>$ The displacement vector obtained from the differences of the adjusted coordinates shows that virtually all the points have undergone movements overtime but this has not however resulted in deformation within the chosen significant level of 95% confidence limit.
> The single point displacement test failed for some stations thus confirming the existence of deformation for some points. This shows that the Least Absolute Sum (LAS) has the capacity to determine stable and unstable reference points in a geodetic network. The determination of deformation status of reference points is very useful and can be applied for monitoring deformation trends in Dam Sites, Exploration areas, Tunnels and engineering structures.

RECOMMENDATIONS

Based on the work done in this study, the following points are hereby recommended:

- Using data from more than two epochs will dramatically enhance the detection of any possible change in a deformation detection and analysis study.
- As a future work, other robust and non-robust methods (e.g., Fredericton Approach, Danish Method, Total Least Square, Multi parameter

Transformation, and Congruency testing methods) could be applied for the deformation detection and analysis. Furthermore dynamic model of deformation detection and prediction using the Kalman filtering methods for the velocity and acceleration determination of deformable body should be examined.

- The Survey body in this country (Nigeria), should wakeup to determine how stable her platform is, in order to avert future hazards and disaster by carrying out observations on our network of controls regularly with advanced Differential Global Positioning System (DGPS) with reference to the continuously Operating reference stations (CORS) networks.

REFERENCES

Chen Y.Q, (1983). Analysis of deformation surveys. A generalized Method. Technical Report No. 94, University of New Brunswick Surveying Engineering. Fredericton, N. B., Canada.

Chen Y.Q., Chrzanowski A., Secord J.M. (1990). A Strategy for the Analysis of the Stability of Reference Points in Deformation Surveys, CISM / JOURNAL ACSGC 44(2).

Chrzanowski A., Chen Y.Q. (1986). Report of the Ad HOC Committee on the Analysis of Deformation. XVIII. International Congress FIG, Toronto, Canada.

Chrzanowski A., Chen Y.Q., Secord JM (1986). Geometrical Analysis of Deformation Surveys, Deformation Measurements Workshop, MIT, Cambridge.
Chrzanowski A. 1986. Geotechnical and Other Non-Geodetic Methods in Deformation Measurements, Proceedings of the Deformation Measurements Workshop, Boston,

Chrzanowski A., Y.Q. Chen, and J.M. Secord. (1983). On the Strain Analysis of Tectonic movements using fault crossing geodetic surveys, Tectonophysics, 97, pp. 297-315.

Chrzanowski A., Y.Q. Chen, and J.M. Secord. (1986). Geometrical Analysis of Deformation Surveys, Proceedings of the Deformation Measurements Workshop, Boston, Massachusetts, 31 October-1 November, Massachusetts Institute of Technology.

Chrzanowski, A., Chen, Y., Romero, P. and Secord, J.M., (1986). Integration of Geodetic and Conference, Sydney. Sedlak, V. and Jecny, M. 2004. Deformation Measurements on Bulk Dam of Waterwork in East Slovakia. Geology, Ecology , Mining Service, Vol. L, No. 2, 1-10.

Cross, P.A., (1983). Advanced Least Squares Applied to Position Fixing. Working Paper, No. 6. North East London Polytechnic: Department of Land Surveying.

Deformation Measurements, Ed. by Chrzanowski, A. and W. Wells, Department of Surveying Engineering, University of New Brunswick, Fredericton, N.B., Pp.536-547.

Engineer Manuel, EM-1110-2-1009, (2002), Structural Deformation Surveying, U.S. Army Corps of Engineers. Washington, DC.

Fotogrametri Mühendisli_I Anabilim Dalı, K.T.Ü Fen Bilimleri Enstitüsü, Trabzon, 2003. Geotechnical Deformation Surveys in the Geosciences. Tectonophysics, Vol. 130, No. 1-4, November: 369-383.

Gökalp E., (1997). Estimation of Movements of the Reference and Object Points in the Deformation Networks (Deformasyon A_larındaki Referans ve Obje Noktalarının Hareketli Olup Olmadı_ının Belirlenmesi), Harita Dergisi, Harita Genel Komutanlı_1 Matbaası, Ankara, Türkiye.

Gökalp E., Tasçı L., (2009). Deformation Monitoring By Gps At Embankment Dams And Deformation Analysis, Survey Review, 41(311): 86-102 (January, 2009).

Ince, C. D., (1999). Ph.D. thesis: Real-time Monitoring of Dynamic Systems with GPS and Kalman Filter, Istanbul Technical University, Turkey (In Turkish).

Ince, C.D. and Sahin, M., (2000). Real-Time deformation Monitoring with GPS and Kalman Filtering. Earth Planet Space, Vol. 52, June: 837-840.

Kuang S. (1996). Geodetic Networks Analysis and Optimal Design Concepts and Applications. Ann Arbor Press. Inc.Chelsea, Michigan.

Lim, M.C., Setan, H., Othman, R. and Omar K., (2010). Continuous Deformation Detection and Visualisation of ISKANDARnet. International Symposium on GPS/GNSS, Taipei, Taiwan, October 26-28.

Massachusetts, 31 October-1 November, Massachusetts Institute of Technology, Cambridge, M.A., pp. 112-153.

Omogunloye O.G. (1988), Optimum Number of Traverse Stations Between Azimuth Checks in a Traverse Network, Unpublished B.Sc. Project, Dept of Surveying and Geoinformatics, University of Lagos, Pp1-61.

Omogunloye O.G., (1990), Quality Control in Geophysical Prospecting, Unpublished M.Sc. thesis, Dept of Surveying and Geoinformatics, University of Lagos, Pp1-88

Omogunloye O.G., Ayeni O.O..and Fajemirokun F.A., (2006), The Simulated Annealing Method of Optimization Technique for the Optimal Design of a Geodetic Network, Geodesy and National Development, The Proceedings of Nigeria Association of Geodesy (NAG) Conference 23-25 August,Pp19-24.

Omogunloye O.G., (2010), The Method of Simulated Annealing for the Optimal Adjustment of the Nigerian Horizontal Geodetic Network, Ph.D. Thesis, Dept of Surveying and Geoinformatics, University of Lagos, Pp1-300

Öztürk E., Terbetçi M. (1992). Adjustment Vol. III (Dengeleme Hesabı Cilt III), K.T.U., Turkey, Trabzon.

Rueger, J.M., (2006). Overview of Geodetic Deformation Measurements of Dams. ANCOLD

Setan H., Singh R., (1998). Comparison of Robust and Non-Robust Methods in Deformation Surveys The 7 th. JSPSVCC Seminar on Integrated Engineering. Kuala Lumpur, Malaysia. 7-8 December. SIGGRAPH 2001, Course 8, Los Angeles, C.A., August 12-17.

Simon, D., (2001). Kalman Filtering. Embedded Survey Programming, Vol. 14, P. 72, June: 72-79.

Singh R., Setan H., (1999). Geometrical Analysis of Deformation, Adjustment, Trend Analysis and Modelling. Presented at World Congress and Exhibition (WEC99). 19-22 July, Kuala, Lumpur.

Singh R., Setan H., (1999/1). Comparison of Different Datum Definitions in Detection of Deformation of a Geodetic Monitoring Networks, in Presented at Research Seminar on Construction, Materials and Environmental Technology. 3-4 February, Universiti Teknologi Malaysia, Johor, Bahru.

Singh R., Setan H.,(2001). Deformation Analysis of a Geodetic Monitoring Network, Geomatica. 55(3): 333-346.
Szostak- Chrzanowski, A., Chrzanowski, A. and Massie'ra. M. 2005. Use of Deformation Monitoring Results in Solving Geomechanical Problems-Case Studies. Engineering Geology, Vol. 79, No. 1-2, June: 3-12.

Tasçı L., (2003). Determination of The Deformation by GPS at Rock Fill Dam (Kaya Dolgu Barajlarda Deformasyonların GPS yöntemi ile Belirlenmesi), Doktora Tezi, Jeodezi ve

Tasçı L., (2008). Dam Deformation Measurements with GPS, Geodezija Ir Kartografija / Geodesy and Cartography, 34(4):116-121.

Tasçı L., Gökalp E., (2002). Evaluation of the Accuracy of Altınkaya Dam GPS Measurements by Minimum Norm Quadratic Unbiased Estimation (MINQUE). International

Tasci, L. (2010). Analysis of Dam Deformation Measurements with the Robust and Non-Robust Methods.

Teskey, W.F. and T.R. Porter. (1988). An Integrated Method for Monitoring the Deformation Behaviour of Engineering Structures, Proceedings of 5th. International (FIG) Symposium on Deformation Measurements and 5th.Canadian Symposium on Mining Surveying and Rock

Journal of Engineering and Applied Scientific Research | Volume 8, |
| :--- |
| Number 1, |
| 2016 |

Welch, G. and Bishop, G. (2001). An Introduction to the Kalman Filter. Proceedings ACM

Welsch, M.W. and Heunecke, O. (2001). Official Report: Models and Terminology for the Analysis of Geodetic Monitoring Observations. Official Report of the Ad-Hoc Committee of FIG Working Group 6.1. Bundeswehr University Munich, University of Hannover, Germany.

Reference to this paper should be made as follows: Omogunloye O.G,; et al. (2018), Application of Least Absolute Sum (Las) Deformation Detection Method using Coordinate Differences from Different Observational Campaigns. J. of Engineering and Applied Scientific Research, Vol. 10, No. 3, Pp. 47-78

