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ABSTRACT 
Deformation study is one of the main research fields in geodesy. 
Deformation study comprises measurement, processing and analysis 
phases, Measurement techniques can be divided into geotechnical, 
structural and geodetic methods. Geotechnical and structural methods 
uses equipment such as tiltmeters, Pseodolites, Laser scanners e.t.c to 
measure changes in length, inclination, relative height, strains e.t.c.  
The geodetic methods are of two basic types, the reference and relative 
methods. This study focuses on the deformation analysis using the 
geodetic method known as the Least Absolute Sum Method. The 
method consists mainly of the independent adjustment of each of two 
epoch data, compatibility test on their a posteriori variances, followed 
by determination of Trend of movements for all the common points in 
the monitoring network. A triangulation network was designed 
(carefully selected) consisting of  45  YTT series second order control  
points within the study area (Lagos State) resulting in  a total of  63 
triangles,189 observations and 90 unknown parameters with 99 
degrees of freedom. The network adjustment was done using the 
method of least squares observation equations. The estimated variance 
factors for the 2D (horizontal) network were 7.82989325645394e-08 
and 7.7207636996395e-08 while 0.03944 and 0.052339 represent 
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the estimated variance factors for the 1D (height) for the first and 
second epochs networks respectively. The compatibility of the two 
epoch data was tested with the variance ratio and compatibility test 
criteria. Actual displacement vectors were computed and transformed 
into the same computational base using S-transformation by Least 
Absolute Sum (LAS), stable and unstable points within the monitoring 
network were determined using Single Point displacement test, the 
displacement vector magnitude was computed for the two methods, 
represented graphically to indicate possible trend of movements that 
might have occurred. This study finds applications in studying the 
deformation of large engineering structures such as high rise 
buildings, bridges, dams, oil exploration zones, mining sites and land 
slide monitoring. 
Keywords: Deformation, Analysis, Least Absolute Sum (LAS). 
 
INTRODUCTION 
One important application of survey control networks is the detection 
of expected deformations at a specified area. This is done by 
measurements made at successive epochs and the most probable values 
of the coordinates are obtained using the well-known method of least 
squares (James, 1985). Any object, when acted upon by external forces, 
deforms, or exhibits changes in its size or shape. These observable 
changes are manifestations of internal stresses or pressures produced 
by the physical interaction of the external forces and the material itself. 
Materials either fail or tear when stresses exceed certain critical values. 
(Chrzanowski et al., 1986). It is this risk of failure which practically 
necessitates deformation monitoring surveys, which allow the 
implementation of mitigating constructive procedures or evacuations 
to take place early enough, to prevent loss of life and material. 
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Generally, the deformation measurement techniques can be divided 
into geotechnical, structural and geodetic methods. Geotechnical and 
structural methods are direct measurement  methods, which use 
special equipment to measure changes in length, inclination, relative 
height, strain, etc. (Teskey and Porter,1988; Chrzanowski, 1986). On 
the other hand, in the geodetic method there are two basic types of 
geodetic monitoring networks; namely the reference and relative 
networks (Chrzanowski et al., 1986). In a reference network, some of 
the points or stations are assumed to be located outside of the 
deformable body or object, thus serving as reference points for the 
determination of the absolute displacements of the object points. 
However, in a relative network, all surveyed points are assumed to be 
located on the deformable body. 
 
This study will focus only on the geodetic method using a relative 
network. In a geodetic monitoring network, the object or area under 
investigation is usually represented by a number of points which are 
permanently monumented or marked. All the points are then observed 
in two or more epochs of time. The geodetic monitoring network can 
be either a conventional (terrestrial) network, a photogrammetry (i.e., 
aerial or close-range) network, Global Positioning System (GPS) 
network or a combination of these network types. 
 
Deformation analysis using the geodetic method mainly consists of a 
two-step analysis via independent adjustment of the network of each 
epoch which involves testing coordinate differences for significance, 
by comparison to the accuracy of their determination, followed by 
deformation detection between the two epochs. During deformation 
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analysis it is important to determine the trend of movements 
(displacements) for all the common points in a monitoring network. 
The trend of movements, then form a basis for preliminary 
identification of the actual deformation models. Although deformation 
analysis is applicable to one-dimensional (1-D), two dimensional (2-
D) and three-dimensional (3-D) monitoring networks, for this study a 
2D (horizontal) and 1D (vertical) networks of secondary controls 
located around Lagos State were investigated, a robust method, Least 
Absolute Sum (LAS) was used for deformation detection and analysis.  
 
STUDY AREA 
The study area is Lagos state and it is the commercial nerve centre and 
the most populous city in Nigeria. Lagos State is Nigeria's largest 
commercial, financial and industrial hub. It has industrial zones 
around the state with over 2000 small, medium and large scale 
industries. It is regarded as the smallest state in the country; however, it 
has the highest population density in the nation. Lagos is 
geographically located on latitudes and longitudes 6°35′ N 3°45′ E   
and 6.583°N 3.750°E Coordinates. Lagos State has a land mass of about 
3,577 square kilometres with about 787 constituting lagoons, swamps, 
marches and creeks. Lagos harbours most of the high rise buildings, 
bridges and engineering structures prone to deformation or 
subsidence. Lagos has several networks of control points spread across 
different parts of the state to which surveys are tied. For this study, 
Secondary controls located in Lagos state were used.  

http://tools.wmflabs.org/geohack/geohack.php?pagename=Lagos_State&params=6_35_N_3_45_E_region:NG_type:adm1st
http://tools.wmflabs.org/geohack/geohack.php?pagename=Lagos_State&params=6_35_N_3_45_E_region:NG_type:adm1st
http://en.wikipedia.org/wiki/Geographic_coordinate_system


 

51 

 

Journal of Physical Science and Innovation 

ISSN: 2277-0119 Volume 10, No. 3, 2018 

 
 
 
 
 
 
 
 

 
 1.0 Administrative map of Lagos state 

 
 
 
 
DATA ACQUISITION 
The study has been executed with an existing geodetic data acquired using the 
conventional surveying technique.  An existing data of a set of control points was 
used to design a reference network. The data used were second order two 
dimensional control point coordinates obtained from the office of the Surveyor-
General of Lagos State while the Orthometric heights for these selected stations in 
the network are derived from EGM 2008. A total of 45 common stations 
coordinates were used for the two epochs. Note that second epoch data in this 
case was simulated from the adjustment of the first epoch data for the purpose of 
this study. Table 3.0, below shows the coordinates of the first and second epoch 
data. 
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Table 3.0: The Coordinates of the First and Second Epoch Data 
 FIRST EPOCH SECOND EPOCH 

S/N 

CONTROL 

POINT 

NAME EASTINGS(m) NORTHINGS(m) HEIGHT(m) EASTINGS(m) NORTHINGS(m) HEIGHT(m) 

1 YTT1 512770.871400334; 718266.132200109; 22.69139892 512770.871403101; 718266.132201002; 22.6714836 

2 YTT2 514506.700499577; 718531.839799538; 22.69178864 514506.700502712; 718531.839892683; 22.6177766 

3 YTT3 512893.348699673; 714574.324598699; 22.32421379 512893.348696706; 714574.324682748; 22.0283972 

4 YTT4 515558.463298852; 713569.142998863; 22.31915793 515558.463313656; 713569.143971483; 22.1792805 

5 YTT5 516586.611797575; 714276.855800185; 22.44819168 516586.611803276; 714276.855808693; 22.4573541 

6 YTT6 518643.696295812; 713094.787300631; 22.27584535 518643.696301644; 713094.787305278; 22.1277046 

7 YTT7 514352.907099268; 714685.214899466; 22.40743677 514352.90709294; 714685.215000243; 22.3007829 

8 YTT8 517061.729398256; 715437.606801309; 22.54378808 517061.729400602; 715437.606814866; 22.6728747 

9 YTT9 518422.044396225; 714609.031901365; 22.43557176 518422.044396833; 714609.031912447; 22.4370771 

10 YTT10 520125.232796594; 713647.970001077; 22.37953996 520125.232796485; 713647.97000797; 22.3638133 

11 YTT11 521363.15129068; 715052.213702974; 22.48641337 521363.151281339; 715052.213730621; 22.569482 

12 YTT12 518498.663596491; 716974.489604158; 22.69806547 518498.663595936; 716974.489641336; 22.9511293 

13 YTT13 514108.928199661; 717481.663299636; 22.61380567 514108.928201137; 717481.663397287; 22.5929253 

14 YTT14 515601.588799851; 717526.274999398; 22.70542529 515601.588808979; 717526.275961109; 22.868333 

15 YTT15 516950.750999607; 716775.036400767; 22.6656666 516950.7510017; 716775.036407083; 22.851861 

16 YTT16 517138.43110192; 717714.634600756; 22.76961739 517138.431104485; 717714.634610646; 23.058185 

17 YTT17 520079.581892186; 717605.081806163; 22.75625371 520079.58188775; 717605.081862575; 23.0669356 

18 YTT18 521384.589782752; 716820.772199095; 22.65590067 521384.589767459; 716820.772291492; 22.8672022 

19 YTT19 521584.838793279; 713648.512600229; 22.32802007 521584.838781533; 713648.512604235; 22.2474788 

20 YTT20 523697.284691038; 712610.341101032; 22.17827755 523697.284674975; 712610.341115527; 21.9320408 

21 YTT21 525256.684295581; 712069.400902666; 22.09307778 525256.684279801; 712069.400939104; 21.7478426 

22 YTT22 523497.609891544; 714124.578899686; 22.3578494 523497.609877763; 714124.578999448; 22.304579 
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23 YTT23 525443.708593041; 714191.748497196; 22.32616293 525443.708582496; 714191.748578731; 22.212263 

24 YTT24 527124.733799406; 713617.755492013; 22.25907939 527124.733796371; 713617.755536764; 22.0740095 

25 YTT25 522501.845287421; 715583.224899734; 22.49919981 522501.845274277; 715583.225000239; 22.5282929 

26 YTT26 526736.830187412; 715474.552392427; 22.45949366 526736.830178688; 715474.552433881; 22.4668134 

27 YTT27 527887.037415264; 714977.706471458; 22.40016023 527887.037436763; 714977.706532537; 22.3521075 

28 YTT28 518840.786597038; 718875.794609559; 22.89331219 518840.786598495; 718875.794694225; 23.3294166 

29 YTT29 520145.435490858; 718953.625408137; 22.9183092 520145.435486309; 718953.625481671; 23.4036233 

30 YTT30 522444.869566192; 719783.514112478; 22.97815103 522444.869536483; 719783.514127727; 23.494706 

31 YTT31 522025.385573317; 718114.274704924; 22.79568104 522025.385549735; 718114.274751322; 23.1433067 

32 YTT32 523186.583369713; 717539.965614425; 22.71579058 523186.583341969; 717539.965648825; 22.9760665 

33 YTT33 528705.879517029; 713817.503986232; 22.26302379 528705.879534535; 713817.504864103; 22.0818816 

34 YTT34 528043.110511926; 712435.484798928; 22.13055794 528043.110515779; 712435.484909801; 21.8191489 

35 YTT35 528419.988315911; 710633.958211361; 21.92731111 528419.98831332; 710633.958237693; 21.4137506 

36 YTT36 529967.93452679; 711032.684607905; 21.95829762 529967.934544663; 711032.684711616; 21.4742604 

37 YTT37 528261.861876; 717210.698619623; 22.63104409 528261.861862215; 717210.698704528; 22.8097254 

38 YTT38 526425.689061496; 718724.127100844; 22.81301857 526425.689028949; 718724.127113802; 23.1712292 

39 YTT39 525076.468986405; 719408.819474891; 22.91308931 525076.468977532; 719408.819551119; 23.3689151 

40 YTT40 526225.935350995; 720282.574474673; 22.98975953 526225.935307325; 720282.574549655; 23.5230335 

41 YTT41 528493.426463876; 718448.80777251; 22.75950388 528493.426333629; 718448.807829748; 23.0647514 

42 YTT42 527884.34385114; 720371.80872944 22.9684489 527884.34360357 720371.80879708; 23.481299 

43 YTT43 523273.527400817; 721154.484610349; 23.12072684 523273.527204784 721154.484704536 23.78354 

44 YTT44 524356.490404865; 722381.886575353; 23.23512038 524356.488142223; 722381.886658528; 24.0128619 

45 YTT45 525882.380108575; 722017.811261183; 23.17551393 525882.380020785; 722017.811315488; 23.8941837 
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Initial Checking of Data and Test on Variance Ratio 
Before deformation analysis can be carried out, it is important to perform initial 
checking on the input data and test on the a-posterior variance factors of both 
epochs (Omogunloye 1988; 1990; 2006 and 2010). This is to ensure that 
common points, same approximate coordinates and same point’s names were 
used in the two campaigns. The a posteriori variance factors of both epochs were 
then tested for their compatibility. The null and alternative hypotheses used are as 
proposed by (Setan 1995; Caspary 1987; Chen et al. 1990; Cooper 1987; Singh 
1999) 

           
and 

       
 
With  being the a-posteriori variance factors for the first and second 
campaigns respectively. 

The test statistic is      [3.11]  
 
With j and i representing the larger and smaller variance factors,  is the Fisher’s 
distribution, α is the chosen significance level (typically α = 0.05) and  and  
are the degrees of freedom for i and j observation campaigns respectively. The 
above test is accepted if  at a significance level α. The failure of the 
above test may be caused by incompatible weighting between the two campaign 
observations or incorrect weighting scheme and any further analysis is stopped at 
such stage. 
 
TREND ANALYSIS    
After the test on the variance ratio, the test is accepted, the displacement vector 
(coordinates differences) and its cofactor matrix is then computed as follows 
         (      [3.12]  
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          [3.13]  

 is the displacement vector,   is the cofactor matrix of   , and  are the 
estimated coordinates of all the common points in the first and second 
observation epochs respectively (with same datum definition),  and  are the 
cofactor matrix of the estimated coordinates  and   . 
 
Least Absolute Sum (LAS) 
Chen, (1983) has proposed a robust method known as Least Absolute Sum (LAS). 
This robust method was developed at the University of New Brunswick, Canada. 
In the  LAS method, some points in a reference network cannot be accepted as 
stable .In other  words not every point has equal importance .Hence in the 
beginning, the weight matrix (W) is accepted as W = I . While datum determines, 
this indicates that all points in the network have the same importance. Therefore, 
the solution is similar to the Helmert transformation, if some points are given unit 
weight and the others a zero weight, that is, W = diag (I,0). 
 
The LAS methods are used when there is no previous information about the 
movement of points within the network.  

                [3.14]  
I = identity matrix 
k = number of iterations 
d = displacement vector  
S = S-transformations matrix 

W = weight matrix 
Then displacement values (d) are calculated as: 

d1 = S1 d           [3.15]  
Qd1 = SQdST          [3.16]  
S = I – H (HT WH)-1 HT W       [3.17]  
d2= S2d1         [3.18] 
Qd2= S2 Qd  S2

T        [3.19] 
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where d1 and Qd1 are the displacement vector and its cofactor matrix respectively 
based on the new datum or computational base, H is the inner constraints matrix 
constructed depending on the union of the datum defects in the two epochs and 
on the number of common points, and W is the weight matrix with diagonal 
value of one for datum points and zero elsewhere. Matrix S is symmetric only for 
the minimum trace solutions. (i.e., all points in the network were defined as 
datum).The group of selected datum points is then tested for its stability by using 
Single Point displacement test. 
 
Formation of Matrix H for the Final S-Transformation 
H is a configuration matrix for the datum defect, called inner constraint matrix. 
Basically, the matrix H depends on the type of network: 1D, 2D or 3D. For 1D, 2D 
and 3D networks, H is having maximum dimensions of (1m by 1), (2m by 4) and 
(3m by 7) respectively, where m is the number of stations. 
  
Equation (3.20) shows the components of the matrix H for a 1D network 
HT   = (1 1 1 1 1………………………….1m)           [3.20]  
 
 
For 2D surveying networks, the first two rows of the matrix H represent the 

translations in the 
x and y directions (tx and ty), the third row defines the rotation about the z axis 

(rz) and the last row is the scale of the network. Equation (3.2.4.1) shows 
the components of the matrix H 

for a  
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2D network   

                                   
                                                         [3.21] 

Where  and ,  are the coordinates of point  which are reduced to 
the centroid or centre of gravity of the network, i.e., 
 

      [3.22] 
      [3.23] 

 
With , ,  the approximate coordinates of point  and m is the number of 
common points in the network. (Kuang, 1996; Ozturk and Serbetci, 1992; Singh 
and Setan , 2001).The first two rows of the inner constraint matrix ( ) take care 
of the translations in the x and y directions, while the third row defines the 
rotation about the vertical (z) axis and the  last row defines the scale of the 
network. For a trilateration network, the last row of  is omitted (Caspary 1987; 
Cooper and Cross 1991; Setan 1997; Chen et al. 1990; Singh 1999).In the first 
transformation ( ) the weight matrix is taken as identity (  for all the 
common points, this indicates that all the points in the network have the same 
importance. The weight matrix for LAS 
 
WK = diag           [3.24] 
The iterative procedure continues until the absolute differences between the 
successive transformed displacements of all the common points i.e    
             
 [3.25] 
are smaller than a tolerance value  δ ( say 0.001m). It is possible that during the 
iterations some dxi, dyi, dzi may approach zero causing numerical instability 
because WK   becomes very large. There are two ways to solve this problem, either  

               

d
(k+1)

  - d
(k) 
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 Setting a lower bound value e.g 0.0001m . If dj
(k) is smaller than the 

lower bound value, its weight is set to zero, or replacing  equation  
[3.26] as  

 
 
WK = diag          [3.26] 
 
 
 
Where dicks is the  component of the vector dk after kth iteration. 
In this study the Least Absolute Sum minimizes the sum of the lengths of the 
displacements i.e 

                                    minimum   [3.27]  
In the final iteration, the cofactor matrix of the displacement vector is computed 
as  

           [3.28] 
 
For 1D networks, there are some differences for the calculation of d’ and Qd’. 
First, the displacements d are arranged in increasing order. The median is 
assigned unit weight 1 and zero weight is assigned to the other displacements d. 
If the total number of d is an even number, the two middle (median) 
displacements d are assigned unit weight 1 and zero weight is assigned to the 
other displacements d ,Then, the new vector of displacements d’  and its cofactor 
matrix Qd’ are  
d’=min∑| |⇒ 
Qd’=SQd(S)T 
 

                          

 

1 

 

               (dxi
(k)

+ δ)
2
 + (dyi

(k)
 + δ)

2
)
2
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where tz is the mean value of the middle displacements and di is the 
displacement of point i. 
S=I-H(HTWH)-1HTW           [3.29] 
 
The stability information of each common point j is then determined through a 
single point test as below (Setan 1995; Setan and Singh 1998) 

    [3.30] 
Where; 

,  = displacement vector and its cofactor matrix respectively for each 
common point j or pooled variance factor. 

, common or pool variance factor     [3.31] 
= a posteriori variance factors of first and second epochs respectively  

,  = degrees of freedom of first and second epochs 
+ , sum of degrees of freedom of first and second epochs 

= significance level (usually chosen as 0.05) 
 
If the above test passes (i.e., ) then the point is assumed to be stable 
at a significance level α. Otherwise, if the test fails (i.e., ) then the 
point is assumed to be deformed (moved). 
 
RESULTS AND DATA ANALYSIS 
Table 4.1a: 2D (X, Y) Network Adjustment Summary 

PARAMETER FIRST EPOCH SECOND EPOCH 
Datum Definitions 2 2 
No of Station 45 45 
No of Observation (n) 189 189 
No of Parameters (m) 90 90 
Degree of Freedom 
(df=n-m) 

99 99 
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Convergence Limit 0.00001 0.00001 
A-posteriori Variance 
(σ) 

7.82989325645394e-
08 

7.96836000130844e-
08 

Trace of the 
Covariance Matrix of 
the Adjusted 
parameter 

5.183975843652210e-
06 

5.27565084002794e-
06 

Trace of the Adjusted  
Observation Matrix 

7.04690393080854e-
06 

7.17152400117759e-
06 

 
Table 4.1b: 1D (Height) Network Adjustment Summary  

PARAMETER FIRST EPOCH SECOND EPOCH 
Datum Definitions 2 2 
No of Station 45 45 
No of Observation (n) 107 107 
No of Parameters (m) 45 45 
Degree of Freedom 
(df=n-m) 

62 62 

A-posteriori Variance 
(σ) 

0.0394472461577893   
0.052339412620338 

Trace of the Covariance 
Matrix of the Adjusted 
parameter 

1.040613555969225 4.018695177022139 

Trace of the Adjusted 
 Observation Matrix 

    1.77512607710052 6.85527356791522 

Deformation Analysis Result 
After the network adjustment, the obtained results, especially the adjusted 
coordinates and the cofactor matrices were used for the computation of the 
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displacement vector and the cofactor matrix of the displacement vector. The 
trend analysis and deformation detection were carried out using the LAS method. 
At the degrees of freedom of the epoch, the Fisher’s critical value obtained at 0.05 
(95%) significant level is 1.39.  The result of the variance ratio test of the two 
epochs shows the test statistic (T) value is 1.020884677924254. The 
displacement vector (d), cofactor matrix of the displacement vector (Qd), the 
inner constraint matrix (H), weight matrix (W), S-transformation matrix (S) and 
other parameters of the LAS were all computed. The results of the displacement 
vector (d) after adjustment of the network, the first iteration displacement vector 
(d1) and the second iteration displacement vector (d2) after transformation by 
Least Absolute Sum method the final single point displacement (dp) are as shown 
in Table 4.2 , Table 4.3, and  Table 4.4. 
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Table 4.2: Displacement Vector of the 1D Network and Stable and Unstable Point    
Displacement 

 Displacement 
Vector 

Displacement Vector on a 
New Computational Base  
After S- Transformation  

Single Point 
Displacement 

PT<Fi 
(0.05,2,df) 
PT<1.550 

 S/N 

CONTROL 
POINT  
NAME 

 
dZ(m) 

d1 = S1d d1 = S2d1 

PTPz 
PT<1.550 
 dz1 dz2 

1 YTT1 -0.01992 -0.62106 -0.54265 0.811994 Stable  
2 YTT2 -0.07401 -0.59154 -0.51313 0.988851 Stable  
3 YTT3 -0.29582 -0.45274 -0.37433 0.592596 Stable  
4 YTT4 -0.13988 -0.41891 -0.3405 0.648932 Stable  
5 YTT5 0.009162 -0.40332 -0.32491 0.600531 Stable  
6 YTT6 -0.14814 -0.35374 -0.27533 0.409578 Stable  
7 YTT7 -0.10665 -0.29257 -0.21416 0.261906 Stable  
8 YTT8 0.129087 -0.28865 -0.21024 0.306232 Stable  
9 YTT9 0.001505 -0.25564 -0.17723 0.191986 Stable  
10 YTT10 -0.01573 -0.24738 -0.16897 0.189104 Stable  
11 YTT11 0.083069 -0.2214 -0.14299 0.147021 Stable  
12 YTT12 0.253064 -0.21416 -0.13575 0.13268 Stable  
13 YTT13 -0.02088 -0.18804 -0.10963 0.070051 Stable  
14 YTT14 0.162908 -0.18152 -0.10311 0.068049 Stable  
15 YTT15 0.186194 -0.16077 -0.08236 0.044635 Stable 
16 YTT16 0.288568 -0.15556 -0.07715 0.040944 Stable  
17 YTT17 0.310682 -0.12838 -0.04997 0.021027 Stable  
18 YTT18 0.211302 -0.12742 -0.04901 0.021141 Stable  
19 YTT19 -0.08054 -0.12323 -0.04482 0.017767 Stable  
20 YTT20 -0.24624 -0.106 -0.02759 0.012284 Stable  
21 YTT21 -0.34524 -0.10018 -0.02177 0.013732 Stable 
22 YTT22 -0.05327 -0.09834 -0.01993 0.003962 Stable  
23 YTT23 -0.1139 -0.07841 0 0 Stable 
24 YTT24 -0.18507 -0.02444 0.053976 0.079391 Stable  
25 YTT25 0.029093 0.021583 0.099994 0.108622 Stable  
26 YTT26 0.00732 0.055404 0.133815 0.308231 Stable  
27 YTT27 -0.04805 0.071178 0.149588 0.449503 Stable  
28 YTT28 0.436104 0.078691 0.157101 0.183723 Stable  
29 YTT29 0.485314 0.103798 0.182208 0.321928 Stable  
30 YTT30 0.516555 0.14556 0.223971 0.528426 Stable 
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31 YTT31 0.347626 0.152772 0.231183 0.514461 Stable  
32 YTT32 0.260276 0.181064 0.259474 0.756523 Stable  
33 YTT33 -0.18114 0.197744 0.276154 1.883885 Moved 
34 YTT34 -0.31141 0.203178 0.281589 2.125777 Moved  
35 YTT35 -0.51356 0.240122 0.318533 2.76796 Moved  
36 YTT36 -0.48404 0.250707 0.329118 2.839587 Moved 
37 YTT37 0.178681 0.328601 0.407011 2.594411 Moved  
38 YTT38 0.358211 0.348322 0.426733 2.418916 Moved  
39 YTT39 0.455826 0.37781 0.456221 2.445382 Moved  
40 YTT40 0.533274 0.405347 0.483757 2.887476 Moved  
41 YTT41 0.305247 0.409051 0.487462 3.288789 Moved 
42 YTT42 0.51285 0.42577 0.504181 3.274917 Moved  
43 YTT43 0.662813 0.55531 0.63372 4.707015 Moved 
44 YTT44 0.777741 0.611166 0.689577 5.687355 Moved 
45 YTT45 0.71867 0.670238 0.748648 6.843486 Moved  



Journal of Engineering and Applied Scientific Research Volume 8,  

Number 1,  

2016 

 

64 

 

Table 4.3: The Displacement Vector Pattern of the Epoch Data using LAS 
 

 
Displacement Vector 

(d) 

Displacement Vector on a New Computational Base  After S- 

Transformation By LAS 

 

Single Point 

Displacement 

(PTp) 

 Displacement Vector 

(d1 = S1d) 

Displacement Vector 

(d2  = S2d1) 

 S/N 

CONTROL 

POINT  

NAME dX(m) dY(m) d1(X) d1(Y) d2(X) d2(Y) 

MAGNITUDE 

√(d2(X)
2
 + 

d2(Y)
2
) PTp (X) PTP(Y) 

1 YTT1 2.77E-06 2.59E-05 7.20E-06 -3.17E-05 4.25E-08 -3.88E-05 3.880E-05 0.000164 0.794432 

2 YTT2 3.14E-06 -0.00011 2.26E-05 5.17E-05 1.54E-05 4.46E-05 4.718E-5 0.186669 1.069351 

3 YTT3 -2.97E-06 0.000105 -2.08E-05 2.24E-05 -2.79E-05 1.52E-05 3.177E-05 0.456962 0.080737 

4 YTT4 1.48E-05 -0.00031 1.11E-05 0.000886 3.96E-06 0.000879 8.79E-04 0.007146 4.246152 

5 YTT5 5.70E-06 0.000124 1.44E-05 -7.86E-05 7.20E-06 -8.58E-05 8.61 E-05 0.024044 4.110841 

6 YTT6 5.83E-06 4.10E-05 2.28E-05 -0.0001 1.57E-05 -0.00011 1.570E-05 0.111269 7.19099 

7 YTT7 -6.33E-06 0.000162 -1.23E-05 3.08E-05 -1.94E-05 2.36E-05 3.053 E-05 0.16821 0.31783 

8 YTT8 2.35E-06 0.000133 2.19E-05 -6.77E-05 1.48E-05 -7.48E-05 7.625 E-05 0.103594 3.158588 

9 YTT9 6.08E-07 3.72E-05 2.54E-05 -8.51E-05 1.83E-05 -9.22E-05 9.399 E-05 0.157434 4.870269 

10 YTT10 -1.09E-07 2.52E-05 3.17E-05 -0.00011 2.46E-05 -0.00011 1.127 E-05 0.293329 7.62088 

11 YTT11 -9.34E-06 8.80E-05 4.08E-05 -8.36E-05 3.37E-05 -9.07E-05 9.675 E-05 0.565388 4.660503 

12 YTT12 -5.55E-07 8.99E-05 3.97E-05 -4.13E-05 3.26E-05 -4.84E-05 5.835 E-05 0.521227 1.323015 

13 YTT13 1.48E-06 1.26E-05 1.12E-05 5.07E-05 4.09E-06 4.35E-05 5.970 E-05 0.010728 0.872408 

14 YTT14 9.13E-06 -0.00053 3.06E-05 0.000906 2.35E-05 0.000899 8.993 E-05 0.300271 4.536646 

15 YTT15 2.09E-06 -6.81E-05 2.92E-05 -6.40E-05 2.21E-05 -7.11E-05 7.4455 E-05 0.236805 2.868241 

16 YTT16 2.56E-06 1.83E-05 3.71E-05 -5.43E-05 2.99E-05 -6.15E-05 6.838 E-05 0.452714 2.130441 

17 YTT17 -4.44E-06 0.00011 5.19E-05 -2.71E-05 4.48E-05 -3.43E-05 5.642 E-05 0.986544 0.649148 

18 YTT18 -1.53E-05 -4.11E-6 4.62E-05 -5.38E-06 3.90E-05 -1.25E-05 2.337 E-05 0.760024 0.086324 

19 YTT19 -1.17E-05 6.57E-05 3.13E-05 -0.00012 2.42E-05 -0.00013 1.3223 E-04 0.297002 9.061258 

20 YTT20 -1.61E-05 0.00012 3.67E-05 -0.00013 2.95E-05 -0.00014 1.43E-04 0.466251 1.066337 
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21 YTT21 -1.58E-05 0.000264 4.55E-05 -0.00012 3.84E-05 -0.00013 1.3555 E-04 0.821701 9.233006 

22 YTT22 -1.38E-05 5.46E-05 4.70E-05 -3.20E-05 3.98E-05 -3.91E-05 5.607 E-05 0.809365 0.851019 

23 YTT23 -1.05E-05 7.04E-05 6.56E-05 -6.19E-05 5.84E-05 -6.91E-05 9.047 E-05 1.865367 2.618017 

24 YTT24 -3.03E-06 0.000137 8.24E-05 -0.00011 7.52E-05 -0.00012 1.4161 E-04 3.129756 7.668884 

25 YTT25 -1.31E-05 5.91E-05 4.91E-05 -1.38E-05 4.20E-05 -2.09E-05 4.691 E-05 0.899676 0.243445 

26 YTT26 -8.72E-06 2.74E-05 8.54E-05 -0.0001 7.82E-05 -0.00011 1.3496 E-04 3.326455 6.232521 

27 YTT27 2.15E-05 -0.00021 0.000121 -9.17E-05 0.000114 -9.89E-05 1.509 E-04 7.224628 5.070011 

28 YTT28 1.46E-06 0.000112 5.63E-05 1.86E-05 4.92E-05 1.15E-05 5.0526 E-05 1.190501 0.07579 

29 YTT29 -4.55E-06 0.000126 6.08E-05 -8.46E-08 5.36E-05 -7.24E-06 5.408 E-05 1.420155 0.028761 

30 YTT30 -2.97E-05 0.000272 5.85E-05 -6.64E-05 5.14E-05 -7.36E-05 8.97714 E-05 1.386828 2.965948 

31 YTT31 -2.36E-05 0.000111 5.09E-05 -4.55E-05 4.38E-05 -5.26E-05 5.661 E-05 0.975635 1.507281 

32 YTT32 -2.77E-05 0.000331 5.21E-05 -6.92E-05 4.49E-05 -7.63E-05 8.853 E-05 1.042566 3.237843 

33 YTT33 1.75E-05 -0.00018 0.000116 0.000711 0.000109 0.000704 1.297 E-04 6.784533 2.442919 

34 YTT34 3.85E-06 0.000319 8.89E-05 -6.24E-05 8.17E-05 -6.96E-05 10.732 E-05 3.947721 2.469739 

35 YTT35 -2.59E-06 0.000591 7.40E-05 -0.00016 6.68E-05 -0.00017 1.833 E-04 2.844835 1.500624 

36 YTT36 1.79E-05 0.000657 0.000109 -9.24E-05 0.000102 -9.96E-05 1.4256 E-04 6.39048 4.741311 

37 YTT37 -1.38E-05 -0.00113 0.000103 -5.31E-05 9.58E-05 -6.02E-05 11.314 E-05 5.015102 1.936708 

38 YTT38 -3.25E-05 0.000115 7.96E-05 -0.0001 7.24E-05 -0.00011 7.240 E-05 2.885911 6.487339 

39 YTT39 -8.87E-06 0.001186 9.72E-05 -2.49E-05 9.00E-05 -3.20E-05 9.5519 E-05 4.402552 0.566615 

40 YTT40 -4.37E-05 0.002614 7.67E-05 -2.66E-05 6.95E-05 -3.38E-05 7.728 E-05 2.663538 0.634454 

41 YTT41 -0.00013 -0.00189 -3.99E-06 -7.27E-05 -1.12E-05 -7.99E-05 8.068 E-05 0.068964 3.45412 

42 YTT42 -0.00025 0.00043 0.000201 -0.00036 0.000194 -0.00037 4.1778 E-05 2.121703 7.28967 

43 YTT43 -0.0002 -0.00133 -9.28E-05 1.78E-05 -1.00E-04 1.06E-05 1.00498 E-04 5.378697 0.062547 

44 YTT44 -0.00226 0.016168 -0.00214 9.41E-06 -0.00215 2.25E-06 2.1500 E-03 2.257432 0.002949 

45 YTT45 -8.78E-05 -0.00057 4.08E-05 -3.18E-05 3.37E-05 -3.90E-05 5.154 E-05 0.621957 0.823719 
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Table 4.4: The Stable and Unstable Point Detection 
 Displacement Vector 

(d2) 
Stable and Unstable Point (Single Point Displacement) 
Using LAS 
Single Point Displacement 
PT=[(dp' * inv(Qdp) * dp)/ 
(2*pv)] 

 
PT<Fi (0.05,2,df) 
PT<1.390 

 S/N 

CONTROL 
POINT  
NAME d2(X) d2(Y) PTp (X) PTP(Y) (X) (Y) 

1 YTT1 4.25E-08 -3.88E-05 0.000164 0.794432 Stable Stable 
2 YTT2 1.54E-05 4.46E-05 0.186669 1.069351 Stable Stable 
3 YTT3 -2.79E-5 1.52E-05 0.456962 0.080737 Stable Stable 
4 YTT4 3.96E-06 0.000879 0.007146 4.246152 Stable Moved 
5 YTT5 7.20E-06 -8.58E-05 0.024044 4.110841 Stable Moved 
6 YTT6 1.57E-05 -0.00011 0.111269 7.19099 Stable Moved 
7 YTT7 -1.94E-5 2.36E-05 0.16821 0.31783 Stable Stable 
8 YTT8 1.48E-05 -7.48E-05 0.103594 3.158588 Stable Moved 
9 YTT9 1.83E-05 -9.22E-05 0.157434 4.870269 Stable Moved 
10 YTT10 2.46E-05 -0.00011 0.293329 7.62088 Stable Moved 
11 YTT11 3.37E-05 -9.07E-05 0.565388 4.660503 Stable Moved 
12 YTT12 3.26E-05 -4.84E-05 0.521227 1.323015 Stable Stable 
13 YTT13 4.09E-06 4.35E-05 0.010728 0.872408 Stable Stable 
14 YTT14 2.35E-05 0.000899 0.300271 4.536646 Stable Moved 
15 YTT15 2.21E-05 -7.11E-05 0.236805 2.868241 Stable Moved 
16 YTT16 2.99E-05 -6.15E-05 0.452714 2.130441 Stable Moved 
17 YTT17 4.48E-05 -3.43E-05 0.986544 0.649148 Stable Stable 
18 YTT18 3.90E-05 -1.25E-05 0.760024 0.086324 Stable Stable 
19 YTT19 2.42E-05 -0.00013 0.297002 9.061258 Stable Moved 
20 YTT20 2.95E-05 -0.00014 0.466251 1.066337 Stable Moved 
21 YTT21 3.84E-05 -0.00013 0.821701 9.233006 Stable Moved 
22 YTT22 3.98E-05 -3.91E-05 0.809365 0.851019 Stable Stable 
23 YTT23 5.84E-05 -6.91E-05 1.865367 2.618017 Moved Moved 
24 YTT24 7.52E-05 -0.00012 3.129756 7.668884 Moved Moved 
25 YTT25 4.20E-05 -2.09E-05 0.899676 0.243445 Stable Stable 
26 YTT26 7.82E-05 -0.00011 3.326455 6.232521 Moved Moved 
27 YTT27 0.000114 -9.89E-05 7.224628 5.070011 Moved Moved 
28 YTT28 4.92E-05 1.15E-05 1.190501 0.07579 Stable Stable 
29 YTT29 5.36E-05 -7.24E-06 1.420155 0.028761 Moved Stable 
30 YTT30 5.14E-05 -7.36E-05 1.386828 2.965948 Stable Moved 



Application of Least Absolute Sum (Las) Deformation Detection Method  
using Coordinate Differences from Different Observational Campaigns 
 

67 

 

31 YTT31 4.38E-05 -5.26E-05 0.975635 1.507281 Stable Moved 
32 YTT32 4.49E-05 -7.63E-05 1.042566 3.237843 Stable Moved 
33 YTT33 0.00010 0.000704 6.784533 2.442919 Moved Moved 
34 YTT34 8.17E-05 -6.96E-05 3.947721 2.469739 Moved Moved 
35 YTT35 6.68E-05 -0.00017 2.844835 1.500624 Moved Moved 
36 YTT36 0.000102 -9.96E-05 6.39048 4.741311 Moved Moved 
37 YTT37 9.58E-05 -6.02E-05 5.015102 1.936708 Moved Moved 
38 YTT38 7.24E-05 -0.00011 2.885911 6.487339 Moved Moved 
39 YTT39 9.00E-05 -3.20E-05 4.402552 0.566615 Moved Stable 
40 YTT40 6.95E-05 -3.38E-05 2.663538 0.634454 Moved Stable 
41 YTT41 -1.12E-5 -7.99E-05 0.068964 3.45412 Stable Moved 
42 YTT42 0.000194 -0.00037 2.121703 7.28967 Moved Moved 
43 YTT43 -1.00E-4 1.06E-05 5.378697 0.062547 Moved Stable 
44 YTT44 -0.00215 2.25E-06 2.257432 0.002949 Moved Stable 
45 YTT45 3.37E-05 -3.90E-05 0.621957 0.823719 Stable Stable 

 
ANALYSIS OF   RESULTS 
After the presentation of results, the results were analysed as shown in the sub 
session below. 
 
Trend and Deformation Analysis of the Displacements Using LAS Method  
After the Least Square Estimation (LSE) of the data of the network, the compatibility 
of the two epochs data was tested with the variance ratio and compatibility test 
passed. The computed variance ratio of the campaigns is lesser than the F-
distribution critical value for the specified confidence level. The critical value for 
the 0.05 (95%) significance level chosen for the Fisher’s distribution (F) is 1.390. 
The test statistic (T), which is the ratio of the variances (the larger divided by the 
small passed. The test on the variance ratio passes at 0.05 significance level (i.e., 
1.02088467792425< 1.390) of the Fisher’s critical value, thus indicating the 
compatibility between the two epochs and permits further analysis to be carried 
out for deformation detection and analysis. For the 1D network, the critical value 
the 0.05(95%) significance level chosen for the Fisher’s distribution (F) is 1.550 
and it also passes the compatibility test.  



Journal of Engineering and Applied Scientific Research Volume 8,  

Number 1,  

2016 

 

68 

 

The trends of movements and deformation analysis of the monitoring network was 
done using the adjusted coordinate differences and the cofactor matrices from both 
campaigns respectively and by applying the LAS method.  The 1D and 2D point 
coordinates X, Y of each epoch and their cofactor matrices were calculated with 
two separate network adjustments. The Deformation program calculated 
displacement in X axis (dX),Y axis (dY) and (dZ). 
 
The LAS determined the final displacement vector (dp). The data met the 
convergence criteria after two iterations. The displacement values obtained from 
the differences of the adjusted coordinates and their transformation by LAS method 
shows that virtually all the stations have undergone movements’ overtime but this 
however did not result in deformation of all the point to a significant level. The 
single point displacement test failed for some points thus confirming the existence 
of deformation for some of the group of selected control points. The summary of 
the parameters of the deformation detection and analysis for 2D and 1D are shown 
in Table 4.4 and Table 4.5 respectively. The results is emphasized by the plot of  
single point displacement vectors ,the stable and unstable points and the relative 
absolute error ellipse of the 45 stations in the network as represented in Figures 4 
.1, 4.2, and 4.3. 
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Table 4.4: Summary of some Key Parameters of the Deformation Detection and 
Analysis (2D) 

KEY PARAMETERS 
LAS 

No of Iteration 2 
Fisher’s Distribution Critical Value for 
95% Confidence Level (F) 

1.390 

Calculated Variance Ratio 
(T=rho1/rho2) 

1.02088467792425 

The Compatibility Test Passed (T<F) 1.02088467792425< 
1.390) 

Pooled Variance Factors 7.77532847804672e-
08 

Combined Degree of Freedom 99 
  
Table 4.5: Summary of some Key Parameters of the Deformation Detection and 
Analysis (1D) 

KEY PARAMETERS SINGLE POINT DISPLACEMENT 
No of Iteration 2 
Fisher’s Distribution Critical Value for 
95% Confidence Level (F) 

1.550 

Calculated Variance Ratio 
(T=rho1/rho2) 

1.327053753 

The Compatibility Test Passed (T<F) 1.327053753< 1.550) 
Pooled Variance Factors 0.0958933293890637 
Combined Degree of Freedom 62 
 
Figure 4.1: Displacement Vector Pattern after S-Transformation using LAS 
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Figure 4.2: Displacement Vector Magnitude of the Stations using LAS 
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Figure 4.3: Relative Absolute Error Ellipse of the 45 Stations in the Lagos State Secondary Control Network 
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CONCLUSIONS 
This study has presented successfully the deformation study of a geodetic 
monitoring network using two epochs data. The major focus has been on the 
identification of stable and unstable points in the network. The following 
conclusions are drawn from the study; 

 The two epoch data were adjusted by the least square adjustment 
technique and passed the compatibility test and are therefore 
compatible. 

 The displacement vector obtained from the differences of the 
adjusted coordinates shows that virtually all the points have 
undergone movements overtime but this has not however resulted in 
deformation within the chosen significant level of 95% confidence 
limit. 

 The single point displacement test failed for some stations thus 
confirming the existence of deformation for some points. This shows 
that the Least Absolute Sum (LAS) has the capacity to determine 
stable and unstable reference points in a geodetic network. The 
determination of deformation status of reference points is very useful 
and can be applied for monitoring deformation trends in Dam Sites, 
Exploration areas, Tunnels and engineering structures. 

 
RECOMMENDATIONS  
Based on the work done in this study, the following points are hereby 
recommended: 
 Using data from more than two epochs will dramatically enhance the 

detection of any possible change in a deformation detection and analysis 
study. 

 As a future work, other robust and non-robust methods (e.g., Fredericton 
Approach, Danish Method, Total Least Square, Multi parameter 
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Transformation, and Congruency testing methods) could be applied for the 
deformation detection and analysis. Furthermore dynamic model of 
deformation detection and prediction using the Kalman filtering methods for 
the velocity and acceleration determination of deformable body should be 
examined.  

 The Survey body in this country (Nigeria), should wakeup to determine how 
stable her platform is, in order to avert future hazards and disaster by carrying 
out observations on our network of controls regularly with advanced 
Differential Global Positioning System (DGPS) with reference to the 
continuously Operating reference stations (CORS) networks.  
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